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In principle, NMR spectroscopy can provide a wealth of
information about molecular dynamics extending over a
wide range of motional time scales. Studies to date have
focused to a large extent on backbone dynamics through
measurement of >N relaxation properties in molecules uni-
formly **N labeled (1—4). An attractive feature of backbone
N relaxation studies is that the relaxation of an **N—NH
spin pair can simply be described by the **N—*H dipolar
interaction and to a smaller extent by **N chemical-shift
anisotropy (5). While cross-correlation effects do exist be-
tween these relaxation mechanisms, methods have been de-
veloped for their efficient removal (6—8). Extension of the
methods developed for probing backbone dynamics to the
study of side-chain motions has proven to be difficult. One
approach involves either uniform (9, 10) or fractional (11)
labeling of the molecule with *3C; in the case of side chains,
however, the mgjority of spin systems are of the AX,, AMX
(methylene), or AX; (methyl) variety, and cross-correlation
effects between the various dipolar spin pairs can signifi-
cantly complicate the interpretation of the relaxation data
(12—-14). Unfortunately, such effects are difficult or impos-
sible to remove, and the detailed experiments necessary to
exploit the information content of such cross-correlation
terms are often not possible for complex molecules such as
proteins.

With these problemsin mind, we have recently developed
anovel *H-based relaxation approach for studying dynamics
of methyl-containing side chains. The method makes use of
auniformly **C-, fractionally H-labeled sample and selects
specifically for **CH,D methyl groups. Because of the poor
resolution and sensitivity of direct-observe H spectroscopy,
the experiments measure the rel axation properties of the deu-
teron indirectly by recording a series of constant-time two-
dimensional *H—*3C correlation spectra. Excellent resolution
is therefore afforded, and high-quality spectra are obtained
in only 2—3 hours of measuring time for sample concentra-
tionson the order of 1 mM. The experimental and theoretical
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details of the approach have been published (15), and an
application to the study of the side-chain dynamics of an
SH2 domain from phospholipase C-y1 in the presence and
absence of a 12-residue phosphopeptide has been reported
(16). The goal of the present Communication is to examine
in detail the effects of cross correlation and cross relaxation
on the fidelity of the ?H relaxation methods presented pre-
viously. We show that accurate °H T, and T, values can be
easily obtained.

For completeness, a brief description of the experiments
that have been developed is provided here. The magnetiza-
tion-transfer pathway in either the T, or T,, experiment can
be described as

J J J
H T, B0 () — D (T) ——s
13 Jen 1
c = (L), [1

where the active couplings involved in each transfer process
are indicated above the arrows and t;, t, denote acquisition
times. During the delay T, the magnetization of interest is
of the form I,C,D, or 1,C,D,, depending on whether a T,
(1.C,D,) or Ty, (1,C,Dy) experiment is recorded. The decay
of these triple-spin terms proceeds at this point in the se-
guence. At the completion of the delay T, the magnetization
is returned to protons for detection by reversing the first
half of the transfer pathway. Fourier transformation of the
resultant data set generates a (*3C, *H) correlation map. A set
of two-dimensional spectraisobtained, with each member of
the set recorded with a different value of T. The intensities
of (*3C, H) correlations as a function of T provide a direct
measure of the relaxation rates of the triple-spin terms,
I.C,D, or I,C,D,. In order to obtain the relaxation of pure
deuterium spin order, D, or Dy, it is necessary to record an
additional experiment which measures the decay of longitu-
dinal order 1,C, and subtract the decay rate of the double-
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TABLE 1%

p11 = AR(Q) + AR(CD) + KYCD)[3J(wp) + 12)(we)] + 2AR(HD)
+ KYHD)[6J(wp) + 6(wp)™™° + 12)(wy)] + AR(HC)
+ KYHC) [3)(wh) + 6J(we) + 63(we)™
+ AR(HH) + R(H, Hy)
p12 = CR(Q, CD) + 0.5CR(CD) + 2CR(HC, HD)
p1s = 4CR(Q, HD) — 2CR(HD)/3 + 8CR(HH, HD) + 8CR(HC, CD)
p1a = CR(HC) + 6CR(HH, HC) + 6CR(HD, CD)
p1s = —0.5CR(HC) — 3CR(HH, HC)
p1s = 8CR(HD)/3 + 16CR(HC, CD) + 16CR(HH, HD)
p17 = 4CR(HC, HD)
p1s = 4CR(HD)/3 — 4CR(HH, HD)
pre = —ACR(HD)/3 — 8CR(HH, HD)
p110 = TKYAHHY[-2J(0) + 123(2w)]
p21 = 12CR(Q, CD) + BCR(CD) + 24CR(HC, HD)
p22 = ARL(Q) + 3AR(CD) + KYCD)[9J(wp)] + 10AR(HD)/3
+ KYHD)[18)(wp) + 183(wp)™ ™ + 4J(wy)]
+ AR(HC) + KYHO)[3J(ww)] + AR(HH) + R(H, Hy
23 = T2CR(HD, CD) + 24CR(HH, HC)
p24 = 12CR(Q, HD) + 6CR(HD) + 24CR(HH, HD)
pas = —4CR(HD) — 12CR(HH, HD)

p26 =0

p27 = —4AR(HD)/3 + 8K Y(HD)J(wy)
p28 = 2CR(HC) — 12CR(HH, HC)
P29 = 0

p210 =0

ps1 = 12CR(Q, HD) + 2CR(HD) + 12CR(HH, HD) + 24CR(HC, CD)
ps2 = 0.5CR(HC) + 3CR(HH, HC) + 18CR(HD, CD)
pss = ARL(Q) + AR(CD)/3 + KYCD)[9(wp) + 4(we)] + 2AR(HD)/3
+ KYHD)[18)(wp) + 183(wp)™®™° + 83(wy)]
+ KYHC)[6J(wy) + 63(we) + 6I(we) e
+ ARL(HH) + 2R(H, H)
pss = 3CR(Q, CD) — 0.5CR(CD) + 12CR (HC, HD)
pss = —6CR(HC, HD)
pse = —4AR(CD)/3 + 8KYCD)J(we) — BAR(HD)/3 + 16K (HD)JI(wy)
psz =0
pss = AR(HC) + 8AR(HD)/3 — 4KY(HD)I(wy)
— BKYHC)I(wy) — 3KIHH)I(wr)
pae = 4AR(HD)/3 — 8KY(HD)I(wy)
P30 =0
pa1 = 2CR(HC) + 24CR(HD, CD) + 12CR(HH, HC)
paz = 4CR(Q, HD) + 2CR(HD)/3 + 4CR(HH, HD)
pas = 4CR(Q, CD) — 2CR(CD)/3 + 16CR(HC, HD)
pas = AR(Q) + AR(CD) + KYCD)[3)(wp)] + 2AR(HD)
+ KP(HD)[6J(wp) + 6J(wp)®° + 24)(wy)] + 2AR(HC)
+ KYHO)[6J(wy] + ARI(HH) + 2R(H, HY

Pas = —AR(HC) — 12KYHD)I(wy) — 3KYHC)I(wn) — 3KHHH)I(wi)
pas = 8CR(CD)/3 + 32CR(HC, HD)
paz = 4CR(HD)/3 + BCR(HH, HD)

pas = —8CR(HC, HD)
pas = —16CR(HC, HD)

Paio = 0

psa = 24CR(HD, CD)

ps2 = 4CR(Q, HD) — 2CR(HD)/3
pss =0

psa = 12K*(HD)J(wp) >~

pss = AR(Q) + AR(CD) + 2AR(HD) + K%CD)[3J(wp)]
+ 6KYHD)J(wp) — 6KYHD)JI(wp)"PHP
pse =0
ps7 = 8CR(HD)/3
pss = —2CR(CD)/3 + 4CR(Q, CD)
pse = 8CR(CD)/3
Ps10 = 0
pe1 = 2CR(HD) + 24CR(HC, CD) + 12CR(HH, HD)
pe2 = 0.5CR(HC)
pes = —2AR(CD)/3 — 4AR(HD)/3 + 4KYCD)J(wc) + 8KYHD)J(wi)
pes = CR(CD) + 12CR(HC, HD)
pes = —6CR(HC, HD)
pes = SAR(CD)/3 + 16AR(HD)/3 + KYCD)[8J(wo)]
+ KYHD)[163(w1)]
+ KYHCO)[6J(wn) + 6J(we) + 6J(we) M + 2R(H, HY
pe7 = 3CR(HH, HC)
pes = 2AR(HD)/3 + AR(HC) — 4KYHD)J(wy) — 3KYHC)I(wh)
pes = —8AR(HD)/3 — 8KYHD)J(wn) — 3K (HH)I(wiy)
P10 =0
pr1 = 24CR(HC, HD)
pr2 = —2AR(HD)/3 + 4K (HD)J(wy)
P73 = 0
pr4 = 24CR(HH, HD)
p75 = 2CR(HD) — 12CR(HH, HD)
p16 = 24CR(HH, HC)
pr7 = AR(HH) + 8AR(HD)/3 + AR(HC) + KYHC)[3J(wy)]
+ KYHD)[8I(ww)] + R(H, Hy)

pre =0
p1e = 2CR(HC) — 12CR(HH, HC)
P710 = 0

ps1 = 6CR(HD) + 24CR(HC, CD) + 12CR(Q, HD)
ps2 = CR(HC) + 18CR(HD, CD)
pas = 12KYHC)I(we)"™C + 36K YHD)JI(wp)"°P

psa =0
pss = —0.5CR(CD) + 3CR(Q, CD)
pss =0
ps7 =0

pss = ARL(Q) + AR(CD)/3 + 6AR(HD) + 2AR(HC)
+ KYCD)[4J(we) + 93(wp)] + 18KUHD)I(wp)
— 18K4(HD)J(wp)"° M + 6KYHC)I(we)
— BKYHC)J(we)HeMe

pse = —4AR(CD)/3 + 8KYCD)J(wc)

Ps10 =0

pe1 = 24CR(HC, CD)

Po2 = Poz = poa =0

pos = CR(CD)
pas = 12KYHC)I(wo)HeHe
peo7 = CR(HC)

pes = —2AR(CD)/3 + 4Kd(CD)J(wc)
pos = BAR(CD)/3 + 2AR(HC) + K¥(CD)[8)(wo)]
+ GKd(HC)J(wc) - 6Kd(H(.:)J(wc)HC’HC
P10 =0
pio1 = ZKY(HHY[-I(0) + 63(2w)]
P102 = P103 = P10a = P05 = P106 = P07 = P1og = P19 = 0

P10 = p11 + R(H, Hy)

2 The summation term in some of the elements of p includes al neighboring proton spins, Hy, that contribute to the relaxation of the methyl proton
spins, denoted by H in the table. Equations [5] and [6] are used to evaluate the spectral-density terms listed in the table. For example, p;, is made up
of terms of the form AR(Q) and AR(CD), among others. The “‘Q’’ and ‘‘CD’’ in AR(Q) and AR(CD) indicate that these terms originate from the
deuterium quadrupolar and the carbon—deuterium dipolar interactions, respectively. Such terms are defined at the bottom of the table. Note that a term
of the form K4(HD)[6J(wp) + 6J(wp)™® P + 12](wy)] is aso present in p; ;. All the elements in this term originate from the proton—deuterium dipolar
interaction [**HD’’ in KYHD)]. The first element, 6J(wp), is an auto-correlation spectral density, while the second element 6J(wp)™~° is a cross term
between *H,—?D and *H,—?D dipolar interactions, where H, and H, are CH,D methyl protons. (Auto-correlation spectral densities are denoted by J(w),
while cross-correl ation spectral densities are denoted by J(w)' ™). Finally, terms of the form CR(Q, CD) or CR(HC, HD), for example (see p; ,), originate
from cross correlation between deuterium quadrupolar and carbon—deuterium dipolar interactions [CR(Q, CD)] or interference between proton—carbon
and proton—deuterium dipolar interactions [CR(HC, HD)].
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TABLE 1—Continued

R(H, HY) = ZKYHHY[IO) + 3I(wy) + 63(2w)]
KYCD) = y&y3h/(4rep)

K(HD) = v2y3h?/(4rfo)

KYHC) = vav&hi(4ric)

KYHHY) = vih/(4rii)

KYHH) = vih?/(4r}.)

CR(Q. CD) = §(e’aQycyo/ren)I(we)*

CR(Q, HD) = §(€°qQywyp/riin)I(we)> ™
CR(HH, HC) = y3ycP(4rduric)I(wy) e
CR(HH, HD) = y{yph?/(4rrip)I(wy) P
CR(HC, HD) = yAycopon?/(4rdcrin)I(wy)HeP
CR(HC, CD) = ynyayoh(4ricris)I(wo) "
CR(HD, CD) = yyycy3h?(4riprén)I(wp) ™™~
CR(HC) = KYHC)[—J(wn — we) + 6)(wh + wd)]
CR(HD) = KYHD)[-J(wy — wp) + 6J(wy + wp)]
CR(CD) = KYCD)[~J(wec — wp) + 6)(we + wp)]
AR(HC) = KYHO)[J(wn — we) + 6J(wn + wo)]
AR(HD) = KYHD)[J(wn — wp) + 6J(wn + wp)]
AR(CD) = KYCD)[J(we — wp) + 6J(we + wp)]
AR(Q) = 15 (€%9Q/)[I(wo) + 43(2w0)]

ARLQ) = 5 (€°9Q/M)[3(wo)]

AR(HH) = »ih/(4rn)[33(wn) + 123(2w1)]
ARL(HH) = vih?/(4r2)[63(wn)]

order magnetization from the decay rate of the triple-order
terms,

1/T.(D) = 1/T:(1,C,D,) — 1/T.(1,C,)

1/T.,(D) = 1/T.,(1.C.Dy) — 1/T.(1.C,). [2]
At first glance, it might appear more practical to refocus the
magnetization so that at the start of the T delay, D, or D,
is present. In practice, however, the very rapid transverse
relaxation of the deuterium spinswould significantly deterio-
rate the sensitivity of such experiments.

A justification of Eq. [ 2] has been provided previoudy (15),
where it was aso shown in a semi-quantitative manner that
the effects of cross correlation between the many different
relaxation mechanisms that contribute to the relaxation of the
triple-spin terms, 1,.C,D, and 1,.C,D,, are insignificant. In the
present Communication, the effects of cross correlation and
cross relaxation are considered in detail, and it is shown that
Eq. [2] isindeed accurate for proteins with molecular weights
that are currently amenable for study by NMR (see below).

In what follows, we first derive the equations describing the
relaxation of 1,C,D,, where only the spins within the methyl
group and adjacent proton spins are considered. The Hamilto-
nian which gives rise to the relaxation can be expressed as

H = H9(D) + H¥(ID) + H*(CD)
+ HA(IC) + HY(11l) + 3 H(MW),  [3]
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where HY(D) is the quadrupolar Hamiltonian for spin D and
H%(AB) is the dipolar Hamiltonian describing the interac-
tions between spins A and B. In Eq. [3], D, |4, I, and C
are the *CH,D methyl deuterium, proton 1, proton 2, and
carbon spins, respectively, | =1, + 1,, and | isaneighboring
proton spin that is dipolar coupled to methyl spins |, and I,.

An extremely lengthy calculation which includes the ef-
fects of cross correlation between all of the relaxation inter-
actions given in Eq. [ 3] aswell as the effects of cross relax-
ation between all spins within the methyl group and between
methyl protons and neighboring proton spins can be per-
formed, following the commutator method of Abragam
(17). A set of coupled equations describing the relaxation
of 1,C,D, results and is given by

dM/dt = —p- M, [4]
where M is a magnetization vector which can be written as
follows M = [(I,C,D,), (I,(3DZ — D?)), (I12C,(3DZ —
D?)), (IZD,), (D,), (1ZC,), (I.), (C.(3D% — D?)), (C,),
(1.C,D,)], D? = D(D + 1) = 2, p is a relaxation matrix
with diagonal terms, p;;, describing the auto relaxation rates
of the elements of M and cross terms, p;;, describing the
cross relaxation between elementsi and j. In M, the value
I,isgiven by I, = 1, + |,,. The elements of p are listed in
Table 1. Note that, in the limit of an isolated **CH,D spin
system, considered initialy, the terms proportional to R(H,
Hy) in p are set to zero, pi 10 = p1; = 0, {i = 1-10}, and
the last term in M is ignored. The influence of neighboring
spins, |y, will be considered shortly.

The spectral-density function used to evaluate the ele-
ments of p can be expressed as (13)

J(w)I™ = H S2(ij, K)7Tm/[1 + (wrm)?]
+ [Pz(uij‘uld) — Sf2(|J, kI)]T]_/[l + (u)'/'l)z]
+ SH1 — SOTI[1 + (wr2)?]}, [5]
where T, is the overdl rotation time, 1/7, = 1/, + 1/ 75,
1/m, = 1/, + 1/7s, 7 IS the correlation time for the
rotation about the methyl symmetry axis, 75 isthe correlation
time describing motion of the symmetry axis, S#(ij, kl) =
P,(cos 6;)P,(cos 6y), S is the order parameter of
the methyl symmetry axis, S?(ij, kl) = S2- S¥(ij, ki), and
P, (u; - uy) is given by (13)
Pz(uij M Uk|) = Pz(COS 0”) Pz(COS 0k|)
+ 2 sin 26;sin 20c0s(¢y; — bu)

+ § §in®0;sin®0ycos 2(d; — du). [6]

In Eq. [6], uag is aunit vector describing the orientation of
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the interaction vector AB in a frame that is fixed in the
macromolecule and (faz, Pas) is the polar angle of Upg.
When ij = kI, J(w)"™ is an auto-correlation spectral-den-
sity term and is simply designated as J(w). If ij #= K,
J(w)" ¥ isacross-correlation term arising from interactions
between ij and kl. Note that such terms can originate from
dipolar interactions between dipoles ij and kI where ij = ki
or may be due to interactions involving different relaxation
mechanisms. For example, in Table 1, J(w)"° " isacross-
correlation spectral density arising from dipole cross terms
involving *H,—2D and *H,—2D (H, and H, are **CH,D pro-
tons). In contrast, J(w)? P isthe cross-correl ation spectral-
density function arising from interference between quadru-
polar and **C—2D dipolar interactions. In the limit that cross-
correlation terms vanish and an isolated **CH,D spin system
is considered, the value of p,, in Table 1 isidentical to the
value for 1/T,(1,C,D,), I, = I, + I}, given by Eq. [3.1] in
Ref. (15).

The effects of cross correlation between the various rel ax-
ation mechanisms indicated in Eqg. [ 3] have been evaluated
by numerical integration of Eq. [4] for a wide range of
motional parameters ,,, 75, 7, S2. In al of the calculations
considered in this Communication, integration of Eq. [4]
extends to 1.5/p,,, and the decay curve generated is fitted
to asingle exponential. In the simulations, we have assumed
ideal tetrahedral geometry for the methyl group and used a
vaue of 165 kHz for the quadrupolar coupling constant,
e’gQ/h (18). Considering 0 < S2 < 1, 0 < 7; < 150 ps,
O<s7s=<1ns and2 < 7, < 25ns, the vaue of p,, differs
from the decay of 1,C,D, (isolated **CH,D spin system) by
no more than 3%. In addition, the right- and left-hand sides
of Eq. [2] differ by less than 3%. (Note that a coupled set
of equations describing the relaxation of 1,C, has also been
derived). The effects of cross correlation are largest, in gen-
eral, when the relaxation rate of 1,C,D, is smallest which
occurs for 7, = 7; = 0. For nonzero values of 75 and 7+,
errors introduced by Eq. [ 2] are even smaller. For example,
for 7, = 20ns, 7o = 0.5 ns, 7; = 35 ps, and SZ = 0.5, the
difference between the right- and left-hand sides of Eq. [ 2]
is less than 0.5%. These values of 7, 7¢, and S? are typical
for methyl-containing side chains (16, 19). Figure 1a shows
simulated decay curves for the triple-spin term, I,.C,D,, in
the case of an isolated spin system and in the presence (O)
and absence (—) of cross correlation obtained with the
following parameters: m,, = 20 ns, 7s = 0.5 ns, 7¢ = 35 ps,
and S? = 05. Figure 1b illustrates the evolution of
the remaining eight elements of M. In this case
P11:P12:013:P14:P15.P16:P17-P18-P1e = 100:0.97:3.33:2.52:
—1.22:0.32:0.11:0.04:—0.06 and p11:p21:031:P41:P51 P61"
P71 ps1-posr = 100:11.63:10.10:5.20:0.28:0.39:0.63:10.21:
0.31. Thesimulated 1/T,(1,C,D,) rate is 0.46% smaller than
p11. Clearly, the effects of cross correlation on measured
values of T,(1,C,D,) are negligible.
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FIG. 1. (a) Simulated decay curves for 1,C,D, for an isolated **CH,D
methyl group in the presence (O) and absence (—) of cross correlation.
(b) Evolution of the remaining eight elements of M, arising due to cross
correlation between the relaxation mechanisms listed in Eq. [3]. Evolution
of (I,(3DZ — D?)), (13C(3D% — D?), (IID,), (D,), (IC)), (l.),
(C,(3D — D?)), (C,) areindicated by (*), (X), (+ = ), (+), (---), (---),
(—), (O), respectively. The motional parameters 7, = 20 ns, 75 = 0.5
ns, 7¢ = 35 ps, and SZ = 0.5 were employed in the simulation.

Up to this point, the discussion has focused on an isolated
3CH,D methyl group. In complex macromolecules, methyl
groups are in proximity to alarge number of protons which
can contribute to the relaxation of the methyl protons. In
what follows, the effects of neighboring protons (i.e., pro-
tons not in the methyl group of interest) are included by
placing a single proton, Hy, at a distance of 2 A from the
methyl carbon aong the three-fold averaging axis. It is
straightforward to calculate that for the case of a 50% ran-
domly deuterated SH2 domain phosphopeptide complex
(20), the effective distance between a methyl carbon and
the neighboring protons in the sample is approximately 2 A
(15). In the calculations of *H—"'H cross relaxation, we have
neglected cross-correl ation effects between the methyl spins
and the proton H,.. The auto-correlation contributions arising
from the additional spin, H,, have been calculated and are
included in Table 1. Note that, unlike the case for an isolated
CH,D methyl, the final term in M, (1,.,C,D,), must now be
included in the calculations since its evolution is coupled
to the relaxation of 1,C,D,. Contributions from relaxation
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between the methyl proton spins and proton H, are included
with the term R(H, Hy) in the elements of p; (1 < i, | <
10). In dl calculations, the auto-relaxation rate of (1,,C,D,),
P1010, 1S assumed to differ from the auto-relaxation rate of
(1C,D,), p11, only in that an additional contribution from
the methyl proton—H, dipolar interaction is included in the
relaxation of {(1,,C,D,). This takes into account the fact that
spin Hy can be relaxed by two CH,D methyl protons, while
only asingle externa proton, H,, relaxes the methyl protons.

Numerical simulations clearly establish that there can be
a very significant contribution to the decay of 1,C,D, from
proton—proton spin flips. For example, for values of ,, 7s,
7¢, and S2 of (10 ns, 0.5 ns, 35 ps, 0.5), close to 20% of
the decay rate is due to dipolar contributions from the neigh-
boring proton, H,. The effects become even larger as afunc-
tion of increasing r,. Nevertheless, for the range of motional
parameters considered, 0 < S2< 1,0 < 7, < 150 ps, 0 <
Ts < 1ns, and 2 < 7, < 25 ns, the left- and right-hand
sides of Eq. [ 2] differ by lessthan 2.5% (i.e., [1/T.(1,C,D,)
- 1/T,(1,C)]/1/T,(D)] < 0.025), indicating that subtrac-
tion of the I,C, decay rate from the measured decay of 1,C,D,
effectively removes the contributions from proton spin flips.
For example, for the specific case of 7, = 15 ns, 75 = 0 ns,
7¢ = 0 ps, S = 1, the value of T,(1,C,D,) calculated by
integrating Eq. [4] to 1.5/ p, 1 isafactor of 1.7 times shorter
than T,(D). Nevertheless, the values of [1/T,(I,C,D,) — 1/
T.(1,C,)] and 1/T,(D) differ by only 0.2%. For the case
of 7n=15ns, .= 0.5ns, 7 = 35ps, SZ = 0.5, T,(1,C,D,)
is 1.2 times smaller than T,(D) while the value of [1/
T,.(1C,D,) — 1/T.(1,C,)] differs from 1/T,(D) by only
0.2%, as well. It is important to indicate that because the
decay of 1,C, can be very nonexponential for large values
of 7, and very small values of 7 and 7; (i.e., 7s = 7¢ =
0), only the initial decay of I,C, should be measured. For
this reason, the decay rate of 1,C, is obtained with the same
delay values T (see Eq. [1]) that are used to measure the
decay of I,C,D, (15, 16).

T,, measurements are performed by applying a wesk B;
(*H) RF field in the transverse plane to spin-lock deuterium
transverse magnetization (15). It is straightforward to show
that cross-correlation effects between the deuterium quadru-
polar interaction and both the deuterium—carbon and the
deuterium—proton dipolar interactions result in the coupling
of I,C,D, to the cross-relaxation terms,

§sin’f cos0(e’aQypyc/r &) I(we) T °(1,(3DZ — D?))
+ 3 sin% cos 0(€qQypyn/r fip) I(we) >

X (17C,(3D7 — D?)), [7]

where z' points along the direction of the effective field
formed by the vector sum of the residual Zeeman field and
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the B, field, tan 6 = w1/ Aw, we = V(w? + Aw?), w, isthe

spin-lock field strength, Aw is the resonance offset, y; is
the gyromagnetic ratio of spin i, and r;; is the distance be-
tween spinsi and j. When w; > Aw, cosf ~ 0, 2’ =y (for
a B, field along y) and the above cross-correlation terms
vanish. In addition, so long as the relation Aw < w; < 1/
Tm is satisfied, T1,(1,C,D,) = T,(1,C,Dy) (15). Note that
other cross-correlation effects are still present during the
spin-lock period (for example, interference between the two
'H—13C dipolar interactions). However, these effects do not
contribute J(w.) ~ J(0) termsto the relaxation expressions,
while the decay of (1,C,D,) is dominated by the J(0) term
arising from the deuterium quadrupolar interaction, and,
hence, cross-correlation effects are completely negligible in
this case as well.

Calculations have been performed to analyze the effects
of cross correlation and cross relaxation on measured decay
values of I,.C,D, in the case of an additional proton spin,
Hy. Theresults establish that [1/T,,(1,.C,Dy) — 1/T.(1,C,)]/
1/T,(D)] < 0.025 for the full range of motional parameters
considered above, indicating that Eq. [2] is valid for T,
measurements as well.

The results from the present set of calculations indicate
that, despite the fact that a complex set of equations governs
the decay of triple-spin magnetization (1.C,D, or I,C,D,), it
is surprisingly simple to extract accurate deuterium relax-
ation rates, 1/T,(D) and 1/T,,(D). The accuracy of the
method is no doubt the result of the fact that by far the
dominant contribution to the decay of the triple-spin terms
arises from the deuterium quadrupolar interaction, and that
the contribution to the relaxation from adjacent proton spins
can be accounted for by the measurement of the decay of |,.C,
two-spin longitudinal order. The ?H relaxation experiments
provide, therefore, a simple approach for obtaining informa-
tion about side-chain dynamics in proteins and are a useful
complement to existing methods for measuring backbone
motions.
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