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The development of multidimensional double- and triple-resonance NMR spec- 
troscopy has enabled the determination of solution structures of proteins with molecular 
weights in the 20-25 kDa range (1, 2). Because these new techniques give rise to the 
assignment of a large number of 15N and 13C chemical shifts they also open up the 
possibility of studying protein dynamics at each position along the protein backbone 
or side chain through the measurement of the relaxation properties of 15N and/or 13C 
nuclei. Recently a number of one- (3,4) and two-dimensional (5- 7) NMR experiments 
have been developed that enable the indirect measurement of relaxation properties of 
insensitive nuclei such as 15N and 13C with high sensitivity. A number of studies of 
backbone and side-chain dynamics in proteins based on 15N and 13C relaxation mea- 
surements have begun to emerge ( 7-1 I ) . 

Despite the potential that NMR holds for the extraction of information relating to 
protein dynamics the interpretation of the relaxation data is by no means trivial. The 
extraction of accurate relaxation rates of 13C nuclei in methylene or methyl groups, 
for example, is complicated by cross-correlation effects between ‘H- 13C dipolar in- 
teractions (12, 13) as well as interference between ‘H-13C dipolar interactions and 
chemical-shift anisotropy ( 14). While it is possible to remove the effects of correlation 
between dipolar interactions and chemical-shift anisotropy ( 15-17)) dipolar cross- 
correlation effects can not be eliminated and can result in substantial errors in measured 
relaxation times if not taken into account properly (18). Equations describing the 
effects of dipolar cross correlation on 13C Tl and ‘H-13C NOE measurements have 
been derived by Werbelow and Grant ( 12). In addition, Vold and Vold have derived 
similar expressions for 13C transverse relaxation rates for a number of different spin 
systems attached to molecules tumbling in the extreme narrowing limit (13). Given 
the increased interest in measuring relaxation rates of side-chain carbons and in par- 
ticular methyl groups in proteins, it is useful to derive expressions describing the 
transverse relaxation of 13C nuclei due to dipolar interactions in AMX, AX2, and AX3 
spin systems for arbitrary values of tumbling time, 7,. 

The relaxation of the transverse elements of the density matrix, p , for a spin system 
of arbitrary complexity can be calculated using Redfield theory (19) according to 
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FIG. 1. Energy-level diagram of an isolated AMX spin system (A = “C, M,X = ‘H) (a) and an isolated 
AX2 spin system (b) with the wavefunctions written in a direct product basis set ( AMX) and an irreducible 
basis representation ( AXI). The eigenstates are numbered from I to 8. The first spin state in wavefunction 
) k) corresponds to the 13C spin state and the remaining spin states are associated with the proton spins. 

du 
z=- Rv, [II 

where v is a vector consisting of density elements, pii, corresponding to transverse 
magnetization and Rkl is a relaxation matrix element. Expressions for Rkl are given 
elsewhere ( 12, 29-21) . Typically, 13C transverse relaxation rates are measured using 
a Cart--Purcell-Meiboom-Gill (CPMG) pulse scheme (22, 23) with the spacing be- 
tween successive 180” 13C pulses, 6, satisfying the condition 6 4 1 /( 2 JAx), where JAx 
is the one-bond heteronuclear coupling constant. Vold and Vold have shown that 
only in this limit is the measured transverse relaxation time independent of 6 (24). 
Moreover, a choice of 6 4 1 /( 2 JAx) ensures that antiphase heteronuclear magnetization 
does not evolve during 6 and does not contribute to the relaxation. This is important, 
especially for macromolecular applications, where it has recently been shown (2% 
27) that the transverse relaxation rate of antiphase heteronuclear magnetization 
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TABLE 1 

Transverse Relaxation of Spin A for a Weakly Coupled AMX Spin System, 
where A = “C M X = ‘H , 2 

vi = Pl,Z w, = wc - aJAM - rJAx 
82 = P3,4 w2 = wc - uJAM + aJAx 
y3 = P5,6 w3 = wc + rJAM - rJAx 
v4 = P7,8 w., = wc + *JAM + rJAx 

I‘, = 1/2J&4 + 1/2J,,(wx) + JAX(WA + wx) + U2J~xh) + 1/2J,x(ox) + 
1/6JAX(WA - wx) + 2/3~,~(0) + JAM&A + 4 + ~@JM&A) + 
1/2Jdwlrl) + ~I~JAM(wA - wd + 2/3Jd9 

r2 = Kxm(w,d + 4/3K,,(O) 
R,, = T, t rz + 2J&w, + wx) 
RIZ = l/2 [J.&x) - Jt.,x(~x)l 
R,3 = l/2 [Jmbd - JMX@M)] 

RM = -2J~xh + ox) 
R22 = r, - I’2 + 1/3J~x(wM - wx) 
Rzs = -l/3 J~xh - wx) 
& = RI, 

R33 = R22 

RM = Ru 

&A =&I 
Rij = Ri, 

Note. ui and R, are the elements of Y and R, respectively (see Eq. [I]), wi is the angular 
frequency of the multiplet component denoted by vi, wc is the 13C angular frequency, and 
Jll is the scalar coupling constant between spins i and j. The density element py connects 
the eigenstates Ii) and b) indicated in Fig. 1. 

[ 2~4~,~,X~] can be significantly larger than the rate of decay of in-phase transverse 
magnetization [A,,yj]. 

In the limit that 6 + 1 /( 2 JAx ), during the CPMG interval the individual multiplet 
components of spin A ( 13C) become locked along the applied RF field and hence all 
components evolve with the same frequency. This allows cross relaxation to occur 
efficiently among the individual lines of the multiplet with the rates given by the off- 
diagonal elements of R. This effect is analogous to the exchange of magnetization that 
occurs between density elements corresponding to 2 magnetization in NOESY ex- 
periments (28, 29). 

In contrast, for the case where 6 % I/( 2 JAx ) many of the density elements corre- 
sponding to individual multiplet components evolve at different frequencies (fre- 
quencies separated by some multiple of JAx) and cross relaxation among these elements 
becomes inefficient. In general, in this limit efficient cross relaxation will occur only 
among degenerate density elements. Expressed in an equivalent way, if two basis 
vectors of the spin-density matrix oscillate at different frequencies, then magnetization 
transfer between the vectors is blocked. The vectors are nonsecular with respect to 
each other (20, 21). 

Figure 1 a shows an energy-level diagram and associated wavefunctions for an AMX 
spin system (A = 13C, M,X = ‘H) with the transitions which give rise to A single- 
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TABLE 2 

Transverse Relaxation of Spin A in an AX2 Spin System 

VI = PI.2 w, = wc - 2aJAx 

h = P3,4 602 = WC 

v3 = P7,8 w3 = wc + 2aJAx 

y4 = PS.6 wq = WC 

&I = 2 JxxWx) + Jxxbd + ~JAx( WA + wx) + J.txhd + JAX~X) + l/3 JAX(WA - wx) + 4/3 JAxKV + 
KXAXbA) + 4/3 &Ax(O) 

&2 = -Jxx(wx) + l/2 [JAX(OX) + Kx,x(ox)l 
&3 = -2JxxGx) 
RM = l/2 [JAX(WX) - ~x,x(~x)l 
R22 = 2 Jxx(wx) + ~J,x(Q + wx) + J~x(wd + JAX@X) + l/3 JAX(Q - wx) + 2/3 JAxKU + 

2 ~~~~~~~ + wx) - ~~~~~~~~ + ~~~~~~~ + 113 ~~6.0~ - ax) - ~3 ~~~~(0) 
R23 = R12 

R24 = 2/3 1 JAXW - &Axm 
Rx3 = RI, 
R34 = R14 

Ru = ~JAX(WA + wx) + JAX(WA) + JAX(WX) + l/35 AX wA -  wX) + 2/3 JAXw -  2 KXAXhA + uX) -  ( 
KXAXh) -  KXAXhX) -  l/3 KXAX(WA -  wX) -  2/3 KXAX(“) 

R, = Rji 

Note. vi, R,, q, and Jil are defined as in the note to Table 1. 

quantum magnetization indicated by arrows. The elements of v and R are defined in 
Table 1, where JMx ( w ) , JAM(o), and JAx (w ) correspond to auto spectral density 
terms due to homonuclear MX dipolar interactions and heteronuclear AM and AX 
dipolar interactions, respectively. K MAX(w) is a spectral density term due to cross- 
correlation between the AM and AX vectors. For the case of spins A, M, and X 
attached to a molecule undergoing isotropic motion, Jo< w) and Kuif( w ) are given by 

Jii(w) = 3[r3ri2h2/(40~2r~)]7c/[1 + (w,)~] 

Kuir(W) = 3[y:yj2h2/(40~2rZr:~)]P2(~OS O,i*)T,/[l + (wT,)~], 121 
where yi is the gyromagnetic ratio of spin i, h is Plan&s constant, rV is the length of 
the vector connecting spins i and j, P2 is a second-order Legendre polynomial, 8oi’ is 
the angle between vectors ij and i’j, and 7, is the correlation time for the isotropic 
tumbling. More complicated expressions for the spectral densities exist for molecules 
tumbling anisotropically ( 12, 30, 31) . 

In the limit that 6 $ 1 /( 2 JAx), 1 /( 2 JAM), cross relaxation occurs among the four 
multiplet components associated with transverse A magnetization with rates given by 
the off-diagonal elements of R indicated in Table 1. In contrast, for the case where 6 
+ 1/(2JAx), 1/(2JAM) and when JAM # JAx, the individual lines of the multiplet 
evolve separately and all of the off-diagonal elements of R are zero in this limit. For 
the case where JAM = JAx, carbon multiplet components corresponding to the tran- 
sitions ,!3Ba c* apa and @I ~1 ~$3 are degenerate and hence evolve at the same 
frequency irrespective of the relative values of 6 and 1 /JAM = 1 / JAx . Therefore, cross 
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TABLE 3 

Transverse Relaxation of Spin A in an AX3 Spin System 

VI = PI,9 w, = WC - 3KJAX 
v2 = P4.12 w2 = wc - T JAx 
v3 = P7.15 w3 = wc + rJAx 
u4 = P8.16 

“5 = w%P2,Nl + PS,ll) 
04 = WC + 3ffJAX 
w5 = wc - rJAx 

Y6 = 1/fik36.14 + PS.13) w6 = wc + ?r JAx 

R,, = 3 J&w* + ox) + 3/2J,&x) + WJ~x(oa) + 1/2J,h - @xl + AJAX@) + ~Jxx(~wx) + 
3Jxxtd + ~&AX(Q) + 4kax(O) + 3Kxxx(wx) 

R,, = ~/~JAx(wx) + &AX(~X) - ~JD&x) - 4Kxxxhx) 
43 = - 2JxxWx) - ~~~~~~~~~~ 
RL4 = 0 
R,, = (2)-“2 [J~xbx) - Jxxbx) - &A,(~,) + Kxxx(wx)l 
R,, = 2(2)“’ I- Jxx(2wx) + ~xxxWx)l 
R,, = 3 J&WA + wx) + 3/2J,,(wx) + 3/2J,x(wd + 1/2J AX WA - Wx) + 10/9.f~,@‘) + 2JxxGh) + ( 

SJxx(wx) + 2JdO) + 4KXAX@A + wx) + ~&AX(WX) - KXAxhA) + WKx~xba - wx) - 

4/9KXAX@) + 4KXXXwX) + KXXX(wX) - 2KXXX(o) 

R23 = ~/~JAx@x) + 4/3Kx~x(wx) 
R2, = R13 

R25 = {4(2)“2/9) [ JAX(@ - KxAx(O)I + (2)“2 [Kxxx(O) - Jxx(O)1 
R26 = {(W2/61 1 JAX(WX) - KXAX(WX)~ + w”* [KXXX(WX) - JXX(WX)I 
R33 = R22 

R3, = R,2 

R35 = R26 

R36 = R25 

&a = RI, 

Re = 46 
R~s = RIS 

f&s = 3JAXh + Wx) + 3/2J,,(Wx) + ~/~JAx(WA) + l/23 AX ( WA - 4 + 14/9 J&O) + 2 Jxx(2wx) + 
2 Jxx(wx) + Jxx(0) - ~&AX(WA + wx) - &AX~W,) - KXAXbA) - ~/~KXAX(WA - OX) - 
8/9Kx,x(O) - 2Kxxxt2wx) - 2 Kxxxbx) - Kxxx(O) 

& = 5/6Jdwx) - 1/3&~xbx) 
& = Rss 
R, = R,, 

Note. Y,, R,, wij, and JO are defined as in the note to Table 1. The spectral densities Kxxx(w) are cross- 
correlation spectral densities arising from ‘H-‘H dipolar interactions involving proton pairs zj and ik (j # 
k). The other spectral densities are defined in the text. 

relaxation will occur between the density elements p3,4 and p5,6 corresponding to these 
transitions (see Fig. 1) for all values of 6 with a rate given by Rz3 in Table 1. 

Figure 1 b shows an energy-level diagram and associated wavefunctions for an AX2 
spin system written in an irreducible basis representation with the A transitions marked 
with arrows. The elements of v and R for this spin system are indicated in Table 2. 
As with the AMX spin system, in the limit that 6 4 1 /( 2 JAx), cross relaxation between 
individual density elements occurs with rates, R, (i # j), given in Table 2. For the 
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case where 6 9 1 /( 2 JAx), all of the off-diagonal elements are zero with the exception 
of Rw, which connects the degenerate transitions p3,4 and p5.6. This is analogous to 
the case where JAM = JAx in the AMX spin system. Prestegard and Grant have derived 
identical equations for the A spin transverse relaxation rate in an AX2 spin system in 
the limit that 6 % 1/(2JAx) (32). 

The energy-level diagram and associated wavefunctions for an AX3 spin system are 
given in Fig. 2 with single-quantum A transitions indicated with arrows. The elements 
of v and R for the AX, case are defined in Table 3. In the limit where 6 4 1 /( 2 JAx) 
all multiplet components are locked along the RF axis and cross relaxation between 
individual components occurs with the rates given in Table 3. In the limit where 6 b 
1 /( 2 JAx) only those density elements u2, v5 and u3, vg are degenerate and hence the 
only nonzero off-diagonal elements of R are R2,5 and R3,6 (i.e., the elements of R that 
connect v2 with v5 and v3 with vg). 

In summary, in this Note we have presented the equations describing the transverse 
relaxation of isolated AMX, AX:!, and AX3 spin systems for the cases where the 
spacing between successive refocusing pulses in the CPMG sequence is either much 
smaller or much larger than 1 /( 2 Jax ) or 1 /( 2 JAM). It is clear that, as suggested by 
Werbelow and Grant for longitudinal relaxation (12), the effects of cross correlation 
can be significant and cannot be neglected in the interpretation of transverse relaxation 
rates used to study molecular dynamics. 
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