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The development of multidimensional double- and triple-resonance NMR spec-
troscopy has enabled the determination of solution structures of proteins with molecular
weights in the 20-25 kDa range ( 1, 2). Because these new techniques give rise to the
assignment of a large number of "’N and '3C chemical shifts they also open up the
possibility of studying protein dynamics at each position along the protein backbone
or side chain through the measurement of the relaxation properties of >N and/or 1*C
nuclei. Recently a number of one- (3, 4) and two-dimensional (5-7) NMR experiments
have been developed that enable the indirect measurement of relaxation properties of
insensitive nuclei such as >N and '*C with high sensitivity. A number of studies of
backbone and side-chain dynamics in proteins based on '*N and '*C relaxation mea-
surements have begun to emerge (7-11).

Despite the potential that NMR holds for the extraction of information relating to
protein dynamics the interpretation of the relaxation data is by no means trivial. The
extraction of accurate relaxation rates of '3C nuclei in methylene or methyl groups,
for example, is complicated by cross-correlation effects between 'H-'3C dipolar in-
teractions (12, 13) as well as interference between 'H-'3C dipolar interactions and
chemical-shift anisotropy (/4). While it is possible to remove the effects of correlation
between dipolar interactions and chemical-shift anisotropy (15-17), dipolar cross-
correlation effects can not be eliminated and can result in substantial errors in measured
relaxation times if not taken into account properly (/8). Equations describing the
effects of dipolar cross correlation on '3C T, and '"H-'3C NOE measurements have
been derived by Werbelow and Grant (12). In addition, Vold and Vold have derived
similar expressions for '*C transverse relaxation rates for a number of different spin
systems attached to molecules tumbling in the extreme narrowing limit (/3). Given
the increased interest in measuring relaxation rates of side-chain carbons and in par-
ticular methyl groups in proteins, it is useful to derive expressions describing the
transverse relaxation of '3C nuclei due to dipolar interactions in AMX, AX,, and AX;
spin systems for arbitrary values of tumbling time, 7.

The relaxation of the transverse elements of the density matrix, p, for a spin system
of arbitrary complexity can be calculated using Redfield theory (79) according to
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FIG. 1. Energy-level diagram of an isolated AMX spin system (A = *C, M,X = 'H) (a) and an isolated
AX, spin system (b) with the wavefunctions written in a direct product basis set (AMX) and an irreducible
basis representation (AX,). The eigenstates are numbered from 1 to 8. The first spin state in wavefunction
|k corresponds to the 3C spin state and the remaining spin states are associated with the proton spins.

dv

dr
where » is a vector consisting of density elements, p;, corresponding to transverse
magnetization and Ry, is a relaxation matrix element. Expressions for Ry, are given
elsewhere (12, 19-21). Typically, '3C transverse relaxation rates are measured using
a Carr-Purcell-Meiboom~Gill (CPMG) pulse scheme (22, 23) with the spacing be-
tween successive 180° 13C pulses, 8, satisfying the condition & < 1/(2J4x ), where Jax
is the one-bond heteronuclear coupling constant. Vold and Vold have shown that
only in this limit is the measured transverse relaxation time independent of § (24).
Moreover, a choice of § <€ 1/(2J,x ) ensures that antiphase heteronuclear magnetization
does not evolve during 6 and does not contribute to the relaxation. This is important,
especially for macromolecular applications, where it has recently been shown (25-
27) that the transverse relaxation rate of antiphase heteronuclear magnetization

—Rvp, 1
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TABLE 1

Transverse Relaxation of Spin A for a Weakly Coupled AMX Spin System,
where A = 3C, M,X = 'H

[T %) w = we — TJam — TIax
V2= p3a wy = we — Tam + 7ax
P3 = psg w3 = we + 7Jam — Tax
Vs = ps wy = we + wham + TIax

[y = 1/20uxlwm) + 12 7axlwx) + Jax(wa + wx) + 1/2Jax(wa) + 1/2Jax(wx) +
1/6 Jax(wa — wx) + 2/3Jax(0) + Jamlwa + wp) + 1/2Jamlw,) +
1720 amlwm) + 176 Jam(wa — wm) + 2/3J,4(0)
T = Kxam(wa) + 4/3 Kxam(0)
R” = Fl + PZ + ZJMX((UM + wx)
Ry = 172 [Jaxlwx) — Iuxl(wx)]
Ry3 =172 [Jamlwm) — Jux(wm)]
Ris = —2hyxiom + wx)
Ry =T, — Iy + 1/3 ux{wm — wx)
= —1/3Jyx(wy — wx)
Ry = Ry3

Note. v; and R;; are the elements of » and R, respectively (see Eq. [1]), ; is the angular
frequency of the multiplet component denoted by »;, w is the *C angular frequency, and
Jj; is the scalar coupling constant between spins / and j. The density element p; connects
the eigenstates |i) and |/ indicated in Fig. 1.

[2A4(x,)X.] can be significantly larger than the rate of decay of in-phase transverse
magnetization [A,,)].

In the limit that 6 < 1/(2Jsx), during the CPMG interval the individual multiplet
components of spin A (**C) become locked along the applied RF field and hence all
components evolve with the same frequency. This allows cross relaxation to occur
efficiently among the individual lines of the multiplet with the rates given by the off-
diagonal elements of R. This effect is analogous to the exchange of magnetization that
occurs between density elements corresponding to Z magnetization in NOESY ex-
periments (28, 29).

In contrast, for the case where § > 1/(2J,x) many of the density elements corre-
sponding to individual multiplet components evolve at different frequencies (fre-
quencies separated by some multiple of J4 x ) and cross relaxation among these elements
becomes inefficient. In general, in this limit efficient cross relaxation will occur only
among degenerate density elements. Expressed in an equivalent way, if two basis
vectors of the spin-density matrix oscillate at different frequencies, then magnetization
transfer between the vectors is blocked. The vectors are nonsecular with respect to
each other (20, 21).

Figure 1a shows an energy-level diagram and associated wavefunctions for an AMX
spin system-{A = '°C, M, X = 'H) with the transitions which give rise to A single-
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TABLE 2

Transverse Relaxation of Spin A in an AX; Spin System

Vi = P12 w; = we — 2w Jax
V2 = P34 W, = @
V3 = prg w3 = we + 2w Jax
V4 = Pse Wy = W
Ry = 2Jxx(wx) + Jxx(wx) + 2Jax(wa + wx) + Jax(wa) + Jax(wx) + 1/3Jax(wa — wx) + 4/3Jax(0) +
Kxax(wa) + 4/3 Kxax(0)

Ry = —Jxx(wx) + 1/2 [Jax(wx) + Kxax(wx)]

Ry = —20xx(2wx)

R4 = 172 [Jax(wx) — Kxax(wx)}

Ry = 2Jxx(wx) + 2Jax(@a + @x) + Jax(wa) + Jax(wx) + 1/3 Jax(wa — wx) + 2/3Jax(0) +
2 Kxax(wa + wx) = Kxax(wa) + Kxax(@x) + 1/3 Kxax(wa — wx) — 2/3 Kxax(0)

Ry =Ry,

Rya = 2/3 [Jax(0) — Kxax(0)]

Ry =Ry,

Ry =Ry,

Ris = 2Jax(wa + wx) + Jax(wa) + Jax(wx) + 1/3Jax(wa — wx) + 2/3 Jax(0) — 2 Kxax(wa + wx) —
Kxax(wa) — Kxax(wx) = 1/3 Kxax(wa — wx) — 2/3 Kxax(0)

Rij = Rj,‘

Note. v;, Ry, w;, and J;; are defined as in the note to Table 1.

quantum magnetization indicated by arrows. The elements of v and R are defined in
Table 1, where Jyx(w), Jam(w), and Jax(w) correspond to auto spectral density
terms due to homonuclear MX dipolar interactions and heteronuclear AM and AX
dipolar interactions, respectively. Kyax(w) is a spectral density term due to cross-
correlation between the AM and AX vectors. For the case of spins A, M, and X
attached to a molecule undergoing isotropic motion, J;(w) and Kj;-(w) are given by

Jiw) = 3[vEyih? (402 r§)Ire/[1 + (wrc)?]
Kiji(w) = 31y} v} h? /(4072 jr )1 Pa(cos B:) 7/ [1 + (wre)?], (2]

where v; is the gyromagnetic ratio of spin i, 4 is Planck’s constant, r;; is the length of
the vector connecting spins / and j, P is a second-order Legendre polynomial, 8- is
the angle between vectors jj and i'j, and 7. is the correlation time for the isotropic
tumbling. More complicated expressions for the spectral densities exist for molecules
tumbling anisotropically (12, 30, 31).

In the limit that 6 < 1/(2Jax), 1/(2Jam), cross relaxation occurs among the four
multiplet components associated with transverse A magnetization with rates given by
the off-diagonal elements of R indicated in Table 1. In contrast, for the case where 6
> 1/(2Jax), 1/(2Jam) and when Jay # Jax, the individual lines of the multiplet
evolve separately and all of the off-diagonal elements of R are zero in this limit. For
the case where Jay = Jax, carbon multiplet components corresponding to the tran-
sitions BBa <« afa and Baf < aaf are degenerate and hence evolve at the same
frequency irrespective of the relative values of  and 1/J,m = 1/Jax. Therefore, cross
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TABLE 3

Transverse Relaxation of Spin A in an AX; Spin System

V1 = Py w; = we — 3nJax
V2 = a2 w; = we — TJax
V3 = P75 w3 = we + Tax
Vs = Pgie wy = we + 3rdax
vs = (I/VE)(Pz,w + p3n) ws = we — TJax
vg = I/VE)(Pa.M + ps13) wg = we + TJax

Ry, = 3Jax(wa + wx) + 3/2Jax(wx) + 3/2Jax(ws) + 1/2Jax(wa — wx) + 2Jax(0) + 6 Jxx(2wx) +
3Jxx(wx) + 3Kxax(@a) + 4 Kxax(0) + 3 Kxxx{wx)

Ry, = 1/2Jax(wx) + Kxax(wx) — 2Jxx(wx) — 4 Kxxx(wx)

Ry = = 2Jxx(2wx) — 4 Kxxx(2wx)

R,=0

Ris = ()77 [Jaxlwx) — Jxxfwx) — Kxax(wx) + Kxodwx)]

Ry = 2(2)”2 [ Mxx(2wx) + Kxxx(2wx)}

Ry = 3Jax(wa + wx) + 3/2Jax(wx) + 3/2Jax(wa) + 1/2Jax(wa — wx) + 10/97,x(0) + 2/xx(2wx) +
STxx(wx) + 2Jxx(0) + 4 Kxax{wa + wx) + 2Kxax(wx) — Kxax(@a) + 2/3 Kxax(wa — wx) —
4/9 Kxax(0) + 4 Kxxx(2wx) + Kxxx(wx) — 2 Kxxx(0)

Ry = 2/3Jax(wx) + 4/3 Kxax(wx)

Ry =Ry3

Rys = {4(2)'*19} [Jax(0) — Kxax(0)] + (2)*? [Kxxx(0) — Jxx(0)]

Ry = {(2)1/2/6} [Jax(wx) — Kxax(wx)] + 3(2)'”2 [ Kxxx(wx) — Ixx(wx)]

Ry = Ry

R =Ry,

R3s = Ry

Ris = Rys

Ry =Ry

Rys = Ryg

Ry = Rys

Rss = 3Jax(wa + wx) + 3/2Jax(wx) + 32Jax(wa) + 1/20ax(wa — wx) + 14/9J3x(0) + 2/3x(2wx) +
2Jxx(wx) + Jxx(0) — 2Kxax(wa + wx) — Kxax(wx) — Kxax(wa) = 1/3 Kxax(wa — wx) —

8/9 Kxax(0) — 2 Kxxx(2wx) — 2 Kxxx(wx) — Kxxx(0)

Rsg = 5/6Jax(wx) — 1/3 Kxax(wx)

Res = Rss

R, = R,

Note. »;, R;j, w;;, and J; are defined as in the note to Table 1. The spectral densities Kxxx(w) are cross-
correlation spectral densities arising from 'H-'H dipolar interactions involving proton pairs ij and ik (j #
k). The other spectral densities are defined in the text.

relaxation will occur between the density elements p; 4 and ps ¢ corresponding to these
transitions (see Fig. 1) for all values of 4 with a rate given by R,; in Table 1.

Figure 1b shows an energy-level diagram and associated wavefunctions for an AX,
spin system written in an irreducible basis representation with the A transitions marked
with arrows. The elements of v and R for this spin system are indicated in Table 2.
As with the AMX spin system, in the limit that 6 < 1/(2J,x ), cross relaxation between
individual density elements occurs with rates, R; (i # j), given in Table 2. For the



NOTES 621

case where 6 > 1/(2J,x), all of the off-diagonal elements are zero with the exception
of R, 4, which connects the degenerate transitions p; 4 and ps¢. This is analogous to
the case where Jay = Jax in the AMX spin system. Prestegard and Grant have derived
identical equations for the A spin transverse relaxation rate in an AX, spin system in
the limit that § » 1/(2Jax) (32).

The energy-level diagram and associated wavefunctions for an AX; spin system are
given in Fig. 2 with single-quantum A transitions indicated with arrows. The elements
of v and R for the AX; case are defined in Table 3. In the limit where 6 < 1/(2J,x)
all multiplet components are locked along the RF axis and cross relaxation between
individual components occurs with the rates given in Table 3. In the limit where 6 >
1/(2Jsx) only those density elements »,,»5s and v;, v, are degenerate and hence the
only nonzero off-diagonal elements of R are R, s and R4 (i.e., the elements of R that
connect v, with »s and »; with »g).

In summary, in this Note we have presented the equations describing the transverse
relaxation of isolated AMX, AX,, and AX; spin systems for the cases where the
spacing between successive refocusing pulses in the CPMG sequence is either much
smaller or much larger than 1/(2Jax) or 1/(2Janm). It is clear that, as suggested by
Werbelow and Grant for longitudinal relaxation (12), the effects of cross correlation
can be significant and cannot be neglected in the interpretation of transverse relaxation
rates used to study molecular dynamics.
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