
 1

SUPPLEMENTARY INFORMATION

Less is more: A simple Methyl-TROSY based pulse scheme offers improved sensitivity

in applications to high molecular weight complexes

Nicolas Bolik-Coulon, Alexander I.M. Sever, Robert W. Harkness, James Aramini, Yuki

Toyama, D. Flemming Hansen, Lewis E Kay

 2

Supporting Figures

Figure S1. Pulse sequence used to measure purged ddHMQC datasets. Narrow black (wide

white) rectangles refer to 90° (180°) pulses. The first proton pulse is a shaped pulse for water

selective excitation. The value of 𝜏! is set to optimize sensitivity, typically less than 1/(4JCH)

and 𝜏! = 1/(8JCH) = 1 ms. Pulses are aligned along the x-axis unless otherwise indicated. The

phase cycle is: 𝜑!= x,-x; 𝜑!= 2(y),2(-y); 𝜑!= 2(x),2(y),2(-x),2(-y); 𝜑!= 2(y),2(-x),2(-y),2(x);

𝜑!= 8(x),8(-x); 𝜑!"#= 2(x,2(-x),x),2(-x,2(x),-x). A minimum cycle of 4 is used. Gradient

strengths (in % maximum) and durations are: G1=(10%,1ms), G2=(20%,1ms),

G3=(30%,0.5ms), G4=(-15%,0.3ms). Further details are provided in the legend to Figure 1.

Figure S2. HMQC (a), ddHMQC (b) and ddHMQC with corrected baseline using in-house
written software (c; see below) for α7α7, 1 GHz, 7°C. All three spectra were contoured at the
same level, with the noise level indicated on the top right of each spectrum. Horizontal dashed
lines in (a) indicate the position of cross-sections shown in (d) and (e). Section (d) is chosen

1H

13C

Grad
G2G1 G3 G3G4 G4

t1 /2 t1 /2

1/(2JCH)

φacq, t2

WALTZ-16

τa τa

τb τb

φ5

φ4φ3 φ3

φ1 φ2

10
HMQC ddHMQC ddHMQC

corrected baseline

15

25

2 1
ω2 -

1H (ppm)~ω2 -
1H (ppm)~

ω
1
-1

3 C
(p
pm

)
~

0 -1 12 0 -1

20

30

a)

d)

e)

b)

ω2 -
1H (ppm)~

2 01 -1
ω2 -

1H (ppm)~
2 01 -1

c) d)

e)

HMQC
ddHMQC
ddHMQC,
corrected
baseline

HMQC
ddHMQC
ddHMQC,
corrected
baseline

1.4x109 1.5x109 1.5x109

 3

to illustrate an example of a “bad” baseline in the ddHMQC spectrum (worst of all 13C
traces). Spectra are contoured at sufficiently low levels so that some noise is observed.
Notably, the quality of the baseline before correction was worse in datasets recorded at the
lower temperature, where broad lines were produced (see below).

Figure S3. Similar regions as shown in Figure S2 but these spectra were recorded at 1 GHz,
40°C.

Figure S4. The same comparison of HMQC/ddHMQC experiments as in Figure S2 but for
AaLS, 1 GHz, 40°C.

10
HMQC ddHMQC ddHMQC

corrected baseline

15

25

2 1
ω2 -

1H (ppm)~ω2 -
1H (ppm)~

ω
1
-1

3 C
(p
pm

)
~

0 -1 123 0 -1

20

30

a)

d)

e)

b)

ω2 -
1H (ppm)~

23 01 -1
ω2 -

1H (ppm)~
23 01 -1

c) d)

e)

HMQC
ddHMQC
ddHMQC,
corrected
baseline

HMQC
ddHMQC
ddHMQC,
corrected
baseline

3

3.3x109 3.7x109 3.7x109

10

12

14

16

18

24

26

3 2 1
ω2 - 1H (ppm)~ω2 - 1H (ppm)~

ω
1

-13
C

(p
pm

)
~

0 -1 123 0 -1

20

22

28

a) b)

ω2 - 1H (ppm)~
23 01 -1

c)

ω2 - 1H (ppm)~
23 01 -1

d)

e)

HMQC
ddHMQC
ddHMQC,
corrected
baseline

HMQC
ddHMQC
ddHMQC,
corrected
baseline

d)

HMQC ddHMQC ddHMQC
corrected baseline

1.5x109 1.7x109 1.7x109

e)

 4

Data processing

Time-domain data are processed using a combination of nmrPipe [1] and an in-house written
python script. Below we list the scripts that have been used along with the python programs
for J-decovolution and baseline correction of ddHMQC spectra (available in electronic format
from the authors upon request).

(1) The conversion of the Bruker data into nmrPipe format is achieved using the fid.com
script:

#!/bin/csh

bruk2pipe -verb -in ./ser \
 -bad 0.0 -ext -aswap -DMX -decim 1240 -dspfvs 20 -grpdly 68 \
 -xN 2048 -yN 220 \
 -xT 1024 -yT 110 \
 -xMODE DQD -yMODE Complex \
 -xSW 16129.032 -ySW 5025.068 \
 -xOBS 999.201 -yOBS 251.253 \
 -xCAR 1.000 -yCAR 20.000 \
 -xLAB 1H -yLAB 13C \
 -ndim 2 -aq2D Complex \
| nmrPipe -fn MULT -c 3.90625e+00 \
 -out ./test.fid -ov

It is important to note the -DMX flag, ensuring that the time-domain signal starts with the first
point of the FID. The python program Apodization.py (see below) used for J-deconvolution
requires this format.

(2) The residual water signal is subtracted with the water.com script:

nmrPipe -in test.fid \
| nmrPipe -fn PS -p0 0 -p1 -78721 \
| nmrPipe -fn POLY -time \
| nmrPipe -fn PS -p0 0 -p1 78721 \
 -out test_Apod.fid -verb 2 -ov

where the phase p1 is calculated to move the center of the spectrum from 1 ppm to on-
resonance with the residual water signal, allowing proper subtraction of water. Note that
𝑝1 = ∆

!"#
360𝑋!"#, where ∆ is the amount in Hz to shift the spectrum, 𝑥𝑆𝑊 is the spectral

width in the 1H dimension, and 𝑋!"# is the number of complex points in the 1H time domain
(after conversion; we recommend loading the converted data into nmrDraw to determine the
value of 𝑋!"#, which will not be equal to xT because of the -DMX flag in the fid.com script.
The value of 𝑋!"# is 954 in this case).

 5

(3) The correction of peak distortions relies on dividing the time-domain signal by sin𝜋𝐽!"𝑡
for t>0 where decoupling is not applied (i.e., the first 1/(2JCH) of the FID). This is performed
using the nmrglue [2] and numpy [3] Python library in the Apodization.py script:

import numpy as np
import nmrglue as ng

dic, data_orig = ng.pipe.read('test_Apod.fid')

SW = dic['FDF2SW'] #proton spectral width

npts = data_orig.shape[-1] #number of points in the proton dimension

times = np.arange(npts)/SW #times at which data-points are stored

data = data_orig.copy()

J = 125.0 #carbon-proton J-coupling constant in Hz

def Apod(t, J): #Apodization function
 return np.sin(np.pi * J * t)

for c, t in enumerate(times):
 if c == 0: #first point cannot be corrected
 pass
 else:
 if t < 1./(2.*J): #only correct until decoupling is
applied
 apod = Apod(t, J)
 data[:, c] /= apod

ng.pipe.write('test_Apod2.fid', dic, data, overwrite=True)

Comments are shown in green.

(3) Finally, the corrected time-domain signal is processed using the After_apod.com script:

nmrPipe -in test_Apod2.fid \
| nmrPipe -fn ZF -size 954 \
| nmrPipe -fn SP -off 0.35 -end 0.98 -pow 2.0 -c 1.0 \
| nmrPipe -fn ZF -size 2048 \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 19.6 -p1 0.0 -di \
| nmrPipe -fn EXT -x1 3.0ppm -xn -1ppm -sw \
| nmrPipe -fn POLY -auto -ord 1 \
| nmrPipe -fn TP \
| nmrPipe -fn LP -fb -ord 16 \
| nmrPipe -fn SP -off 0.35 -end .98 -pow 2.0 -c 1.0 \
| nmrPipe -fn ZF -auto \
| nmrPipe -fn FT \
| nmrPipe -fn PS -p0 90 -p1 180.0 -di \

 6

| nmrPipe -fn TP \
| nmrPipe -fn POLY -auto -ord 4 \
 -out test_apod_finish.ft -verb 2 -ov

There are 954 complex t2 points in the converted (-DMX) data and

nmrPipe -fn ZF -size 954

simply ensures that this is the case.

The first point in the proton dimension is equal to 0 (it cannot be corrected using the
Apodization.py script), which introduces a DC baseline offset. Thus, it is essential to apply a
baseline correction before transposing and processing the carbon dimension to ensure that
linear prediction functions properly.

(4) For some applications (typically α7α7 at 7°C) we improve the final baseline using the
FitBaseline.py script:

import numpy as np
import nmrglue as ng
from scipy.optimize import curve_fit
import math

dic, data = ng.pipe.read('test_apod_finish.ft')

limMin, limMax = 40, 460 #noise level will be evaluated for points
between 0 and 39, and point 460 to the end; must ensure that there are no
peaks in these regions

NP_H = np.shape(data)[1] #number of points in the proton dimension
NP_C = np.shape(data)[0] #number of points in the carbon dimension

def Poly(x, coeff): #polynomial function that fits the baseline
 s = 0.
 for n in range(len(coeff)):
 s += coeff[n] * x**(len(coeff) - n - 1)

 return s

def Truncate(data, ppm, noise): #function to retain part of the signal
only within +-2xnoise, where noise is the noise level

 trunc = []
 trunc_ppm = []

 span = 30 #range over which standard deviation is evaluated

 for d in range(0, len(data), span):

 7

 std = np.std(data[d:d+span]) #standard deviation of the
signal in the considered portion

 if abs(std) <= 2.*abs(noise):
 trunc.append(data[d:d+span])
 trunc_ppm.append(ppm[d:d+span])

 trunc = np.concatenate([t for t in trunc])
 trunc_ppm = np.concatenate([f for f in trunc_ppm])

 return trunc, trunc_ppm

for n in range(NP_C):
 Slice = data[n, :].copy()

 N = max(abs(Slice))
 Slice /= N #Normalization of the slice

 noise = np.std(np.concatenate([Slice[:limMin], Slice[limMax:]]))
 #noise level for the slice, computed using the above limits

 Slice_c, uc_H_ppm_trunc = Truncate(Slice, uc_H_ppm, noise)

 Coeff = np.polyfit(uc_H_ppm_trunc, Slice_c, 4) #fit to a
polynomial of degree 4

 data[n, :] -= N * Poly(uc_H_ppm, Coeff) #subtract the
result of the fit

ng.pipe.write('test_apod_custom.ft', dic, data, overwrite=True)

The initial part evaluates the noise level, 𝜎, on a per-cross-section basis, by only considering
the portions of the cross-section that have no signals. These portions are determined by the
values of the constants limMin and limMax, chosen such that there are no signals for points
lower than limMin and higher than limMax in each cross-section. Then, the parts of the cross-
section with intensities within ±2𝜎 for a range of span points are considered to be baseline
and are fitted to a polynomial of degree 4; note that the first span points are evaluated
[0,span-1], followed by the next span points [span,2span-1] and so forth to establish the
baseline. Finally, the resulting polynomial is subtracted from the original cross-section.

Comparison of linewidths of two Lorentzian functions of different heights

We write a Lorentzian function

ℒ! 𝜔 =
𝑅!

Δ𝜔! + 𝑅!!
 (S1)

where R2 is the transverse relaxation rate of the magnetization and ∆𝜔 = 𝜔 − 𝜔! with 𝜔! the
peak position (rad/s). Consider a second Lorentzian function with the same linewidth at half
height but where the peak height is scaled by a factor k:

 8

ℒ! 𝜔 = 𝑘
𝑅!

Δ𝜔! + 𝑅!!
 (S2)

We can calculate the linewidth of these Lorentzian functions, LW1 and LW2 (rad/s) at an
arbitrary height, say 𝛽𝑇!, 𝛽 ≤ 1, where 𝑇! = 1 𝑅! is the height of ℒ! 𝜔 when 𝜔 = 𝜔!:

𝐿𝑊! = 2𝑅!
1− 𝛽
𝛽 (S3)

𝐿𝑊! = 2𝑅!
𝑘 − 𝛽
𝛽 (S4)

At a level close to the noise, 𝛽 is very small and the linewidths can be approximated as

𝐿𝑊! ≈ 2𝑅!
1
𝛽

 (S5)

𝐿𝑊! ≈ 2𝑅!
𝑘
𝛽 (S6)

Thus, at a sufficiently low level, the linewidth of ℒ! 𝜔 is 𝑘 smaller than that of ℒ! 𝜔 and
the peak of higher intensity appears broader. This is illustrated in the scheme below.

Scheme S1. Lineshapes of two Lorentzian functions, with ℒ! 𝜔 =𝑘ℒ! 𝜔 , k=2, and 𝜔! = 0.
The linewidths at 𝛽 𝑅! with R2=20 s-1 and 𝛽=0.1 are shown.

-200

0.00

0.02

0.04

0.08

0.06

0.10

-150 -100 -50 0 50 100 150 200

In
te
ns
ity
(s
)

Offset (rad.s-1)

 9

References

[1] F. Delaglio, S. Grzesiek, GeertenW. Vuister, G. Zhu, J. Pfeifer, and A. Bax, “NMRPipe:

A multidimensional spectral processing system based on UNIX pipes,” J. Biomol. NMR,
vol. 6, no. 3, pp. 257–293, Nov. 1995, doi: 10.1007/BF00197809.

[2] J. J. Helmus and C. P. Jaroniec, “Nmrglue: an open source Python package for the
analysis of multidimensional NMR data,” J. Biomol. NMR, vol. 55, no. 4, pp. 355–367,
Apr. 2013, doi: 10.1007/s10858-013-9718-x.

[3] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for
Efficient Numerical Computation,” Comput. Sci. Eng., vol. 13, no. 2, pp. 22–30, Mar.
2011, doi: 10.1109/MCSE.2011.37.

 10

In what follows we include the pulse sequence code for the ddHMQC, as well as the cpd file
for WALTZ-16 delayed decoupling.

Pulse sequence for the ddHMQC:

/* hmqc_lek_1G_delaydec_cp

 Used to record 13C 1H HMQC of methyl groups, with options for 15N, 13C
and 2H decoupling during t1
 Use for D2O samples and 15N,13C decoupling turned off

 Prefer to use WALTZ-16 decoupling (starting with delay of 4ms) at 3.3 kHz
B1
 Modify the WALTZ-16 cpd by adding d20 at the start

 Written by LEK

*/

#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>

;Define phases
#define zero ph=0.0
#define one ph=90.0
#define two ph=180.0
#define three ph=270.0

;Define Pulses
define pulse pwh
 "pwh=p1" ; 1H hard pulse at power pl1
define pulse pw_sl1
 "pw_sl1=p14" ; eburp1 pulse
define pulse pwc
 "pwc=p2" ; 13C hard pulse at power pl2
define pulse pwd
 "pwd=p4" ; 2H pulse at power pl4

;Define delays

"in0=inf1/2"
"d11=30m"

define delay taua
 "taua=d5" ; < 1/(4JCH) 1.8 ms

define delay tau1

define delay hscuba
 "hscuba=30m"

 11

;define flags
;f1180 ; set zgoptns -Df1180

#ifdef comp9024090_flg
#ifdef f1180
 "d0=(in0 - pwc*4.0/PI - pwh*4.6667 - 16u - 2u - 2u)/2"
#else
 "d0=(0.2u - pwc*4.0/PI - pwh*4.6667 - 16u - 2u - 2u)/2"
#endif
#else
#ifdef f1180
 "d0=(in0 - pwc*4.0/PI - pwh*4.0 - 16u - 2u - 2u)/2"
#else
 "d0=(0.2u - pwc*4.0/PI - pwh*4.0 - 16u - 2u - 2u)/2"
#endif
#endif

#ifdef OneDarray
#else
define loopcounter ni
 "ni=td1/2"
#endif

;Ndec ; set zgoptns -DNdec
;COdec ; set zgoptns -DCOdec
;Ddec ; set zgoptns -DDdec

/* Assign cnsts to check validity of parameter changes */
#ifdef fsat
 "cnst10 = plw10" ; tsatpwr - set to max of 0.00005W
#endif
#ifdef water_flg
 "cnst14=spw14" ; power level for eburp1 pulse preeceding start of
sequence
#endif
 "cnst21=plw21" ; dpwr pl21 - set max at 4.5W
#ifdef COdec
 "cnst22=plw22" ; dpwrco pl22/sw22 - set max at 8.0W
#endif

#ifdef Ndec
 "cnst31=plw31" ; dpwr2 pl31 - set max at 5.8W
#endif

#ifdef Ddec
 "cnst4=plw4" ; dpwr3 pl4 - set max at 10.5W
 "cnst41=plw41" ; dpwr3D pl41 - set max at 1.5W
#endif

#ifdef Ddec
"acqt0 = -2u - 2u - pwd - 4u - 2u"
#endif

 12

1 ze

; check validity of parameters

 if "d0 < 0.1u "
 {
 2u
 print "warning: initial d0 value is negative - First t1 point will be
incorrect Must LP"
 }

 if "aq > 0.130"
 {
 2u
 print "error: aq is too large <= 130 ms"
 goto HaltAcqu
 }

#ifdef fsat
 if "cnst10 > 0.001"
 {
 2u
 print "error: presat power pl10 is too large"
 goto HaltAcqu
 }
#endif

#ifdef water_flg
 if "cnst14 > 0.015"
 {
 2u
 print "error: power level for eburp1 pulse is too large"
 goto HaltAcqu
 }
#endif

#ifdef COdec
 if " cnst22 > 6.0"
 {
 2u
 print "error: dpwrco pl22 too large"
 goto HaltAcqu
 }
#endif

#ifdef Ndec
 if " cnst31 > 9.0"
 {
 2u
 print "error: dpwr2 pl31 too large"
 goto HaltAcqu

 13

 }
#endif

 if "pwc > 20u"
 {
 2u
 print "error: pwc too large < 20 us"
 goto HaltAcqu
 }

#ifdef Ddec
 if "cnst4 > 13.5"
 {
 2u
 print "error: dpwr3 pl4 too large"
 goto HaltAcqu
 }

 if "cnst41 > 3.0"
 {
 2u
 print "error: dpwr3D pl41 too large"
 goto HaltAcqu
 }

; d11 LOCKDEC_ON ; Not required for AvanceIII-HD
 50u LOCKH_ON
 d11 H2_PULSE
 2u pl41:f4 ; set power pl4 for 2H flipback pulses
#endif

2 d11 do:f2

 20u fq=cnst1:f1 ; jump from methyls to water

#ifdef Ddec /* D decoupling */
d11 H2_LOCK ; put lock channel in lock mode
6m LOCKH_OFF ; turn off lock hold

#ifdef fsat /* zgoptn -Dfsat */
 4u pl10:f1 ; power(tsatpwr) for presaturation
 d1 cw:f1 zero ; Hcw(d1)x
 4u do:f1 ; cw off
 2u pl1:f1 ; power(tpwr)

#ifdef fscuba /* Scuba pulse sequence */
 hscuba ; delay(hscuba)
 (pwh zero):f1 ; H 90x180y90x
 (pwh*2 one):f1
 (pwh zero):f1
 hscuba ; delay(hscuba)
#endif /* end fscuba */

 14

#else /* if fsat is no */
 2u pl1:f1 ; power(tpwr)
 d1 ; delay(d1)
#endif /* end if fsat */

50u LOCKH_ON
15u H2_PULSE

#else /* no D decoupling */

#ifdef fsat /* zgoptn -Dfsat */
 4u pl10:f1 ; power(tsatpwr) for presaturation
 d1 cw:f1 zero ; Hcw(d1)x
 4u do:f1 ; cw off
 2u pl1:f1 ; power(tpwr)

#ifdef fscuba /* Scuba pulse sequence */
 hscuba ; delay(hscuba)
 (pwh zero):f1 ; H 90x180y90x
 (pwh*2 one):f1
 (pwh zero):f1
 hscuba ; delay(hscuba)
#endif /* end fscuba */

#else /* if fsat is no */
 2u pl1:f1 ; power(tpwr)
 d1 ; delay(d1)
#endif /* end if fsat */
#endif /* end of D_decoupling */

#ifdef Ddec
 20u UNBLKGRAMP ; dly 20u, unblank gradients
#else
 20u UNBLKGRAD ; dly 20u, unblank gradients and lock hold
#endif

#ifdef water_flg
; now apply eburp1 pulse

 2u
 (pw_sl1:sp14 zero):f1
 2u
#endif

 2u
 p50:gp0*0.5 ; gradient 0*0.5
 d16

#ifdef buffer_flg
 20u fq=cnst2:f1 ; jump from methyls to buffer
 2u

 15

 (pw_sl1:sp14 zero):f1
 2u
#endif

 10u fq=0:f1 ; jump back to methyls
 2u pl1:f1
 2u pl2:f2
 2u pl31:f3

 (pwc zero):f2 ; C90x - To destroy 13C Boltzman magnetization

 2u
 (p50:gp0) ; gradient 0
 d16

; This is the real start

"tau1 = d0"

if "tau1 < 0.2u" {
 "tau1 = 0.2u"
}

 (pwh zero):f1 ; H90x

 2u
 p51:gp1 ; gradient 1
 d16

 "DELTA = taua - 2.0u - p51 - d16 - pwh*2.0/PI"
 DELTA

 (center(pwh*2 ph26):f1 (pwc*2.0 ph26):f2)

 2u
 p51:gp1 ; gradient 1
 d16

/* If zgoptn -DDdec turn on 2H dec */

ifdef Ddec
 "DELTA = taua - 2.0u - p51 - d16 - 2u - pwd - 2u - 2u - 2u + 2u + 2u + pwd
+ de + 4u + 2u"
 DELTA ; delay 1/4JCH
 2u pl4:f4 ; dly 2u, set pwr pl4 dpwr3
 (pwd one):f4 ; 2H 90(y)
 2u pl41:f4 ; dly 2u, set pwr pl41 dpwr3D
 (2u cpd4 zero):f4 ; Turn on 2H decoupling - cpd4, phase x
else
 "DELTA = taua - 2.0u - p51 - d16 - 2u + de + 4u + 2u" ; if !Ddec then
compensate for all subsequent delays
 DELTA ; delay 1/4JCH

 16

#endif

 2u pl2:f2
 (pwc ph3):f2 ; C90ph3

/* If zgoptn -DCOdec turn on off-resonance CO dec */

ifdef COdec
 2u pl22:f2
 (2u cpds8 zero):f2 ; Turn on CO dec, cpdprg8, sync mode
else
 2u
 2u
#endif

/* If zgoptn -DNdec turn on 15N dec */
ifdef Ndec
 2u pl31:f3 ; set power pl31 for 15N decoupling
 (2u cpds3 zero):f3 ; Turn on 15N decoupling, cpdprg3 - waltz16
#else
 2u
 2u
endif

 tau1 ; t1/2

#ifdef comp9024090_flg
 (pwh ph4):f1 ; H90x
 2u
 (pwh*2.6667 ph5):f1 ;H 240/90
 2u
 (pwh ph4):f1 ; H90x
#else
 (pwh ph4):f1 ; H90x
 2u
 (pwh*2 ph5):f1 ; H180y
 2u
 (pwh ph4):f1 ; H90x
#endif

 tau1

ifdef COdec
 2u do:f2 ; Turn off CO decoupling
 2u pl2:f2 ; set 13C high power
#else
 2u pl2:f2 ; set 13C high power
 2u
endif

ifdef Ndec
 2u

 17

 2u do:f3 ; Turn off 15N decoupling on channel 3
#else
 2u
 2u
endif

 (pwc ph8):f2 ; C90 ph8

ifdef Ddec
 2u do:f4 ; Turn off 2H decoupling on channel 4
 2u pl4:f4 ; dly 2u, set pwr pl4 dpwr3
 (pwd three):f4 ; 2H 90(-y)
 4u BLKGRAMP
#else
 4u BLKGRAD
#endif

 2u pl21:f2 ; lower power for 13C decoupling

 go=2 ph31 cpds2:f2 ; acquire fid with delayed 13C decoupling
 d11 do:f2 mc #0 to 2
 F1PH(calph(ph3, +90),calph(ph3,+180) & calph(ph31, +180) & caldel(d0,
+in0))

#ifdef Ddec
d11 H2_LOCK
d11 LOCKH_OFF
; d11 LOCKDEC_OFF ; use statement for earlier hardware
#endif

HaltAcqu, 1m
exit

ph3=0 2
ph4=0 0 1 1 2 2 3 3
ph5=1 1 2 2 3 3 0 0
ph6=0
ph7=0 0 2 2
ph8=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
ph31=0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2
ph26=0
ph27=1
ph28=2
ph29=3

;d1 : repetition delay
;d5 : taua ~1/4JCH
;d11 : delay for disk i/o, 30ms
;d16 : gradient recovery delay, 200us
;d20 : set to exactly 1/2JCH when decoupling begins in t2
;pl1 : tpwr - power level for pwh
;pl2 : dhpwr - power level for hard 13C pulse pwc

 18

;pl21 : dpwr - power level for 13C decoupling cpd2
;pl22 : dpwrcodec - power level for cos modulated seduce
;sp22 : cos modulated seduce decoupling pattern
;spw14 : power level for eburp1 pulse
;spnam14: eburp1 pulse on water
;pl23 : 5 or 6dB higher power than pl21
;pl31 : dpwr2 - power level for 15N cpd3
;pl4 : dpwr3 - power level for 2H flipback pulses
;pl41 : dpwr3D - power level for 2H cpd4
;p1 : pwh
;p14 : eburp1 pulse width, typically 7000u
;p2 : pwc
;p22 : pwco90 (seduce1 dec) pattern length us @ pl22 for CO decoupling
;p31 : pwn at dpwr2 for 15N decoupling during 2*TC(~29ms)
;p4 : pwd at dpwr3 for 2H flipback pulses
;p41 : pwddec at dpwr3D for 2H decoupling
;p63 : set to 1600 us
;ni : td1/2 number of complex points in t1
;cpd2 : 13C decoupling according to program defined by cpdprg2
;cpd3 : 15N decoupling according to program defined by cpdprg3
;cpd4 : 2H decoupling according to program defined by cpdprg4
;cpd8 : 13CO decoupling according to program defined by cpdprg8
;pcpd2: 13C 90 degree pulse at pl21 for cpd2
;pcpd3: 15N 90 degree pulse at pl31 for cpd3
;pcpd4: 2H 90 degree pulse at pl41 for cpd4
;pcpd8: seduce1 decoupling pattern length for cpd8
;spnam22 : file name for CO decoupling
;spnam28 : file name for higher power bilevel dec
;spnam29 : file name for lower power bilevel dec
;cnst1 : water(Hz) - methyl(Hz)
;cnst2 : buffer(Hz) - methyl(Hz)
;zgoptns :
Df1180,DNdec,DCOdec,DDdec,Dfsat,DoneDarray,Dfscuba,Dcomp9024090_flg,Dwater_
flg,Dbuffer_flg

Cpd file for decoupling:
 d20
1 pcpd*3:180
 pcpd*4:0
 pcpd*2:180
 pcpd*3:0
 pcpd :180
 pcpd*2:0
 pcpd*4:180
 pcpd*2:0
 pcpd*3:180
2 pcpd*3:0
 pcpd*4:180
 pcpd*2:0
 pcpd*3:180
 pcpd :0

 19

 pcpd*2:180
 pcpd*4:0
 pcpd*2:180
 pcpd*3:0
 lo to 2 times 2
3 pcpd*3:180
 pcpd*4:0
 pcpd*2:180
 pcpd*3:0
 pcpd :180
 pcpd*2:0
 pcpd*4:180
 pcpd*2:0
 pcpd*3:180
 jump to 1

