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Supporting Figures 
 

 
 
Figure S1. Pulse sequence used to measure purged ddHMQC datasets. Narrow black (wide 

white) rectangles refer to 90° (180°) pulses. The first proton pulse is a shaped pulse for water 

selective excitation. The value of 𝜏! is set to optimize sensitivity, typically less than 1/(4JCH) 

and 𝜏!  = 1/(8JCH) = 1 ms. Pulses are aligned along the x-axis unless otherwise indicated. The 

phase cycle is: 𝜑!= x,-x; 𝜑!= 2(y),2(-y); 𝜑!= 2(x),2(y),2(-x),2(-y); 𝜑!= 2(y),2(-x),2(-y),2(x); 

𝜑!= 8(x),8(-x); 𝜑!"#= 2(x,2(-x),x),2(-x,2(x),-x). A minimum cycle of 4 is used. Gradient 

strengths (in % maximum) and durations are: G1=(10%,1ms), G2=(20%,1ms), 

G3=(30%,0.5ms), G4=(-15%,0.3ms). Further details are provided in the legend to Figure 1. 

 
 
 
 

 
 

Figure S2. HMQC (a), ddHMQC (b) and ddHMQC with corrected baseline using in-house 
written software (c; see below) for α7α7, 1 GHz, 7°C. All three spectra were contoured at the 
same level, with the noise level indicated on the top right of each spectrum. Horizontal dashed 
lines in (a) indicate the position of cross-sections shown in (d) and (e). Section (d) is chosen 
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to illustrate an example of a “bad” baseline in the ddHMQC spectrum (worst of all 13C 
traces). Spectra are contoured at sufficiently low levels so that some noise is observed. 
Notably, the quality of the baseline before correction was worse in datasets recorded at the 
lower temperature, where broad lines were produced (see below).   

 

 
 

Figure S3. Similar regions as shown in Figure S2 but these spectra were recorded at 1 GHz, 
40°C.  

 

 

Figure S4. The same comparison of HMQC/ddHMQC experiments as in Figure S2 but for 
AaLS, 1 GHz, 40°C.  
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Data processing 
 
Time-domain data are processed using a combination of nmrPipe [1] and an in-house written 
python script.  Below we list the scripts that have been used along with the python programs 
for J-decovolution and baseline correction of ddHMQC spectra (available in electronic format 
from the authors upon request).  
 
 
(1) The conversion of the Bruker data into nmrPipe format is achieved using the fid.com 
script: 
 
#!/bin/csh 
 
bruk2pipe -verb -in ./ser \ 
  -bad 0.0 -ext -aswap -DMX -decim 1240 -dspfvs 20 -grpdly 68  \ 
  -xN              2048  -yN               220  \ 
  -xT              1024  -yT               110  \ 
  -xMODE            DQD  -yMODE        Complex  \ 
  -xSW        16129.032  -ySW         5025.068  \ 
  -xOBS         999.201  -yOBS         251.253  \ 
  -xCAR           1.000  -yCAR          20.000  \ 
  -xLAB              1H  -yLAB             13C  \ 
  -ndim               2  -aq2D         Complex  \ 
| nmrPipe -fn MULT -c 3.90625e+00 \ 
  -out ./test.fid -ov 
 
It is important to note the -DMX flag, ensuring that the time-domain signal starts with the first 
point of the FID. The python program Apodization.py (see below) used for J-deconvolution 
requires this format. 
 
(2) The residual water signal is subtracted with the water.com script: 
 
# 
nmrPipe    -in test.fid                                   \ 
| nmrPipe  -fn PS -p0 0 -p1 -78721                        \ 
| nmrPipe  -fn POLY -time                                 \ 
| nmrPipe  -fn PS -p0 0 -p1 78721                         \ 
   -out test_Apod.fid -verb 2 -ov 
 
where the phase p1 is calculated to move the center of the spectrum from 1 ppm to on-
resonance with the residual water signal, allowing proper subtraction of water. Note that 
𝑝1 = ∆

!"#
360𝑋!"#, where ∆ is the amount in Hz to shift the spectrum, 𝑥𝑆𝑊 is the spectral 

width in the 1H dimension, and 𝑋!"# is the number of complex points in the 1H time domain 
(after conversion; we recommend loading the converted data into nmrDraw to determine the 
value of 𝑋!"#, which will not be equal to xT because of the -DMX flag in the fid.com script. 
The value of 𝑋!"# is 954 in this case). 
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(3) The correction of peak distortions relies on dividing the time-domain signal by sin𝜋𝐽!"𝑡 
for t>0 where decoupling is not applied (i.e., the first 1/(2JCH) of the FID). This is performed 
using the nmrglue [2] and numpy [3] Python library in the Apodization.py script: 
 
import numpy as np 
import nmrglue as ng 
 
dic, data_orig = ng.pipe.read('test_Apod.fid') 
 
SW = dic['FDF2SW']    #proton spectral width 
 
npts = data_orig.shape[-1]  #number of points in the proton dimension 
 
times = np.arange(npts)/SW  #times at which data-points are stored 
 
data = data_orig.copy() 
 
J = 125.0    #carbon-proton J-coupling constant in Hz 
 
def Apod(t, J):  #Apodization function 
        return np.sin(np.pi * J * t) 
 
for c, t in enumerate(times): 
        if c == 0:  #first point cannot be corrected 
                pass 
        else: 
                if t < 1./(2.*J): #only correct until decoupling is 
applied 
                        apod = Apod(t, J) 
                        data[:, c] /= apod 
 
ng.pipe.write('test_Apod2.fid', dic, data, overwrite=True) 
 
Comments are shown in green.  
 
(3) Finally, the corrected time-domain signal is processed using the After_apod.com script: 
 
# 
nmrPipe    -in test_Apod2.fid                               \ 
| nmrPipe  -fn ZF -size 954                                 \  
| nmrPipe  -fn SP -off 0.35 -end 0.98 -pow 2.0 -c 1.0       \ 
| nmrPipe  -fn ZF -size 2048                                \ 
| nmrPipe  -fn FT                                           \ 
| nmrPipe  -fn PS -p0 19.6 -p1 0.0 -di                      \ 
| nmrPipe  -fn EXT -x1 3.0ppm -xn -1ppm  -sw                \ 
| nmrPipe  -fn POLY -auto -ord 1                            \ 
| nmrPipe  -fn TP                                           \ 
| nmrPipe  -fn LP -fb -ord  16                              \ 
| nmrPipe  -fn SP -off 0.35 -end .98 -pow 2.0 -c 1.0        \ 
| nmrPipe  -fn ZF -auto                                     \ 
| nmrPipe  -fn FT                                           \ 
| nmrPipe  -fn PS -p0 90 -p1 180.0 -di                      \ 
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| nmrPipe  -fn TP                                           \ 
| nmrPipe  -fn POLY -auto -ord 4                            \ 
   -out test_apod_finish.ft -verb 2 -ov 
 
There are 954 complex t2 points in the converted (-DMX) data and 
 
nmrPipe  -fn ZF -size 954                                  
 
simply ensures that this is the case. 
 
The first point in the proton dimension is equal to 0 (it cannot be corrected using the 
Apodization.py script), which introduces a DC baseline offset. Thus, it is essential to apply a 
baseline correction before transposing and processing the carbon dimension to ensure that 
linear prediction functions properly. 
 
(4) For some applications (typically α7α7 at 7°C) we improve the final baseline using the 
FitBaseline.py script: 
 
import numpy as np 
import nmrglue as ng 
from scipy.optimize import curve_fit 
import math 
 
dic, data = ng.pipe.read('test_apod_finish.ft') 
 
limMin, limMax = 40, 460  #noise level will be evaluated for points 
between 0 and 39, and point 460 to the end; must ensure that there are no 
peaks in these regions 
 
 
NP_H = np.shape(data)[1] #number of points in the proton dimension 
NP_C = np.shape(data)[0] #number of points in the carbon dimension 
 
def Poly(x, coeff):  #polynomial function that fits the baseline 
 s = 0. 
 for n in range(len(coeff)): 
  s += coeff[n] * x**(len(coeff) - n - 1) 
 
 return s 
 
 
def Truncate(data, ppm, noise): #function to retain part of the signal 
only within +-2xnoise, where noise is the noise level 
 
 trunc = [] 
 trunc_ppm = [] 
 
 span = 30  #range over which standard deviation is evaluated 
 
 for d in range(0, len(data), span): 
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  std = np.std(data[d:d+span])  #standard deviation of the 
signal in the considered portion 
 
  if abs(std) <= 2.*abs(noise): 
   trunc.append(data[d:d+span]) 
   trunc_ppm.append(ppm[d:d+span]) 
 
 trunc = np.concatenate([t for t in trunc]) 
 trunc_ppm = np.concatenate([f for f in trunc_ppm]) 
 
 return trunc, trunc_ppm 
 
 
for n in range(NP_C): 
 Slice = data[n, :].copy() 
 
 N = max(abs(Slice)) 
 Slice /= N    #Normalization of the slice 
 
 noise = np.std(np.concatenate([Slice[:limMin], Slice[limMax:]]))
 #noise level for the slice, computed using the above limits 
 
 Slice_c, uc_H_ppm_trunc = Truncate(Slice, uc_H_ppm, noise) 
 
 
 Coeff = np.polyfit(uc_H_ppm_trunc, Slice_c, 4)  #fit to a 
polynomial of degree 4 
 
 data[n, :] -= N * Poly(uc_H_ppm, Coeff)   #subtract the 
result of the fit 
 
ng.pipe.write('test_apod_custom.ft', dic, data, overwrite=True) 
 
The initial part evaluates the noise level, 𝜎, on a per-cross-section basis, by only considering 
the portions of the cross-section that have no signals. These portions are determined by the 
values of the constants limMin and limMax, chosen such that there are no signals for points 
lower than limMin and higher than limMax in each cross-section. Then, the parts of the cross-
section with intensities within ±2𝜎 for a range of span points are considered to be baseline 
and are fitted to a polynomial of degree 4; note that the first span points are evaluated 
[0,span-1], followed by the next span points [span,2span-1] and so forth to establish the 
baseline. Finally, the resulting polynomial is subtracted from the original cross-section. 
 
 
Comparison of linewidths of two Lorentzian functions of different heights 
 
We write a Lorentzian function 

ℒ! 𝜔 =
𝑅!

Δ𝜔! + 𝑅!!
 (S1) 

where R2 is the transverse relaxation rate of the magnetization and ∆𝜔 = 𝜔 − 𝜔! with 𝜔! the 
peak position (rad/s). Consider a second Lorentzian function with the same linewidth at half 
height but where the peak height is scaled by a factor k: 
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ℒ! 𝜔 = 𝑘
𝑅!

Δ𝜔! + 𝑅!!
 (S2) 

We can calculate the linewidth of these Lorentzian functions, LW1 and LW2 (rad/s) at an 
arbitrary height, say 𝛽𝑇!, 𝛽 ≤ 1, where 𝑇! = 1 𝑅! is the height of ℒ! 𝜔  when 𝜔 = 𝜔!: 

𝐿𝑊! = 2𝑅!
1− 𝛽
𝛽  (S3) 

𝐿𝑊! = 2𝑅!
𝑘 − 𝛽
𝛽  (S4) 

 
At a level close to the noise, 𝛽 is very small and the linewidths can be approximated as 
 

𝐿𝑊! ≈ 2𝑅!
1
𝛽

 (S5) 

𝐿𝑊! ≈ 2𝑅!
𝑘
𝛽 (S6) 

 
Thus, at a sufficiently low level, the linewidth of ℒ! 𝜔  is 𝑘 smaller than that of ℒ! 𝜔  and 
the peak of higher intensity appears broader. This is illustrated in the scheme below. 
 

 
 

Scheme S1. Lineshapes of two Lorentzian functions, with ℒ! 𝜔 =𝑘ℒ! 𝜔 , k=2, and 𝜔! = 0. 
The linewidths at 𝛽 𝑅! with R2=20 s-1 and 𝛽=0.1 are shown.  
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In what follows we include the pulse sequence code for the ddHMQC, as well as the cpd file 
for WALTZ-16 delayed decoupling. 
 
Pulse sequence for the ddHMQC: 
 
/* hmqc_lek_1G_delaydec_cp 
 
  Used to record 13C 1H HMQC of methyl groups, with options for 15N, 13C 
and 2H decoupling during t1 
  Use for D2O samples and 15N,13C decoupling turned off 
 
  Prefer to use WALTZ-16 decoupling (starting with delay of 4ms) at 3.3 kHz 
B1 
   Modify the WALTZ-16 cpd by adding d20 at the start 
 
  Written by LEK  
 
*/ 
 
#include <Avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
 
;Define phases 
#define zero ph=0.0 
#define one ph=90.0 
#define two ph=180.0 
#define three ph=270.0 
  
;Define Pulses 
define pulse pwh 
       "pwh=p1"             ; 1H hard pulse at power pl1 
define pulse pw_sl1 
       "pw_sl1=p14"         ; eburp1 pulse 
define pulse pwc 
       "pwc=p2"             ; 13C hard pulse at power pl2 
define pulse pwd 
       "pwd=p4"             ; 2H pulse at power pl4 
 
;Define delays 
 
"in0=inf1/2" 
"d11=30m" 
 
define delay taua 
       "taua=d5"            ; < 1/(4JCH) 1.8 ms  
 
define delay tau1 
 
define delay hscuba 
  "hscuba=30m" 
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;define flags 
;f1180    ; set zgoptns -Df1180 
 
#ifdef comp9024090_flg 
#ifdef f1180 
  "d0=(in0 - pwc*4.0/PI - pwh*4.6667 - 16u - 2u - 2u)/2" 
#else 
  "d0=(0.2u - pwc*4.0/PI - pwh*4.6667 - 16u - 2u - 2u)/2" 
#endif 
#else 
#ifdef f1180 
  "d0=(in0 - pwc*4.0/PI - pwh*4.0 - 16u - 2u - 2u)/2" 
#else 
  "d0=(0.2u - pwc*4.0/PI - pwh*4.0 - 16u - 2u - 2u)/2" 
#endif 
#endif 
 
#ifdef OneDarray 
#else 
define loopcounter ni 
  "ni=td1/2" 
#endif 
 
;Ndec    ; set zgoptns -DNdec 
;COdec   ; set zgoptns -DCOdec 
;Ddec    ; set zgoptns -DDdec 
 
/* Assign cnsts to check validity of parameter changes */ 
#ifdef fsat 
   "cnst10 = plw10" ; tsatpwr - set to max of 0.00005W 
#endif 
#ifdef water_flg 
   "cnst14=spw14" ; power level for eburp1 pulse preeceding start of 
sequence 
#endif 
   "cnst21=plw21" ; dpwr pl21 - set max at 4.5W 
#ifdef COdec 
   "cnst22=plw22" ; dpwrco pl22/sw22 - set max at 8.0W 
#endif 
 
#ifdef Ndec 
   "cnst31=plw31" ; dpwr2 pl31 - set max at 5.8W 
#endif 
 
#ifdef Ddec 
   "cnst4=plw4"   ; dpwr3 pl4 - set max at 10.5W 
   "cnst41=plw41" ; dpwr3D pl41 - set max at 1.5W 
#endif 
 
#ifdef Ddec 
"acqt0 = -2u - 2u - pwd - 4u - 2u" 
#endif 
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1 ze 
 
; check validity of parameters 
 
  if "d0 < 0.1u " 
  { 
   2u 
   print "warning: initial d0 value is negative - First t1 point will be 
incorrect Must LP" 
  } 
 
  if "aq > 0.130" 
  { 
   2u 
   print "error: aq is too large <= 130 ms" 
   goto HaltAcqu 
  } 
 
#ifdef fsat 
  if "cnst10 > 0.001" 
  { 
   2u 
   print "error: presat power pl10 is too large" 
   goto HaltAcqu 
  } 
#endif 
 
#ifdef water_flg 
  if "cnst14 > 0.015" 
  { 
   2u 
   print "error: power level for eburp1 pulse is too large" 
   goto HaltAcqu 
  } 
#endif 
 
#ifdef COdec 
  if " cnst22 > 6.0" 
  { 
   2u 
   print "error: dpwrco pl22 too large" 
   goto HaltAcqu 
  } 
#endif 
 
#ifdef Ndec 
  if " cnst31 > 9.0" 
  { 
   2u 
   print "error: dpwr2 pl31 too large" 
   goto HaltAcqu 
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  } 
#endif 
 
  if "pwc > 20u" 
  { 
   2u 
   print "error: pwc too large < 20 us" 
   goto HaltAcqu 
  } 
 
#ifdef Ddec 
  if "cnst4 > 13.5" 
  { 
   2u 
   print "error: dpwr3 pl4 too large" 
   goto HaltAcqu 
  } 
 
  if "cnst41 > 3.0" 
  { 
   2u 
   print "error: dpwr3D pl41 too large" 
   goto HaltAcqu 
  } 
 
;   d11 LOCKDEC_ON ; Not required for AvanceIII-HD  
  50u LOCKH_ON 
  d11 H2_PULSE 
  2u pl41:f4      ; set power pl4 for 2H flipback pulses 
#endif 
 
2 d11 do:f2  
 
 20u fq=cnst1:f1                     ; jump from methyls to water 
 
#ifdef Ddec    /* D decoupling */ 
d11 H2_LOCK    ; put lock channel in lock mode 
6m LOCKH_OFF   ; turn off lock hold 
 
#ifdef fsat                           /* zgoptn -Dfsat */ 
  4u pl10:f1                          ; power(tsatpwr) for presaturation 
  d1 cw:f1 zero                       ; Hcw(d1)x 
  4u do:f1                            ; cw off 
  2u pl1:f1                           ; power(tpwr) 
 
#ifdef fscuba                   /* Scuba pulse sequence */ 
   hscuba                          ; delay(hscuba) 
    (pwh zero):f1                  ; H 90x180y90x 
    (pwh*2 one):f1 
    (pwh zero):f1 
   hscuba                          ; delay(hscuba) 
#endif                           /* end fscuba */ 
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#else                             /* if fsat is no */ 
 2u pl1:f1                        ; power(tpwr) 
 d1                               ; delay(d1) 
#endif                            /* end if fsat */ 
 
50u  LOCKH_ON 
15u H2_PULSE 
 
#else    /* no D decoupling */ 
 
#ifdef fsat                           /* zgoptn -Dfsat */ 
  4u pl10:f1                          ; power(tsatpwr) for presaturation 
  d1 cw:f1 zero                       ; Hcw(d1)x 
  4u do:f1                            ; cw off 
  2u pl1:f1                           ; power(tpwr) 
 
#ifdef fscuba                   /* Scuba pulse sequence */ 
   hscuba                          ; delay(hscuba) 
    (pwh zero):f1                  ; H 90x180y90x 
    (pwh*2 one):f1 
    (pwh zero):f1 
   hscuba                          ; delay(hscuba) 
#endif                           /* end fscuba */ 
 
#else                             /* if fsat is no */ 
 2u pl1:f1                        ; power(tpwr) 
 d1                               ; delay(d1) 
#endif                            /* end if fsat */ 
#endif                            /* end of D_decoupling */ 
 
#ifdef Ddec 
 20u UNBLKGRAMP          ; dly 20u, unblank gradients 
#else 
 20u UNBLKGRAD             ; dly 20u, unblank gradients and lock hold 
#endif 
 
#ifdef water_flg 
; now apply eburp1 pulse 
 
  2u 
  (pw_sl1:sp14 zero):f1 
  2u 
#endif 
 
  2u  
  p50:gp0*0.5       ; gradient 0*0.5 
  d16 
 
#ifdef buffer_flg 
  20u fq=cnst2:f1                     ; jump from methyls to buffer 
  2u 
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  (pw_sl1:sp14 zero):f1 
  2u 
#endif 
 
  10u fq=0:f1                         ; jump back to methyls 
  2u pl1:f1 
  2u pl2:f2 
  2u pl31:f3 
 
  (pwc zero):f2   ; C90x - To destroy 13C Boltzman magnetization 
 
  2u  
  (p50:gp0)       ; gradient 0 
  d16 
 
; This is the real start 
 
"tau1 = d0" 
 
if "tau1 < 0.2u" { 
   "tau1 = 0.2u" 
} 
 
  (pwh zero):f1                             ; H90x 
 
  2u 
  p51:gp1                                  ; gradient 1 
  d16 
 
 "DELTA = taua - 2.0u - p51 - d16 - pwh*2.0/PI" 
  DELTA                                    
 
  (center(pwh*2 ph26):f1 (pwc*2.0 ph26):f2) 
   
  2u 
  p51:gp1                                  ; gradient 1 
  d16 
 
/*  If zgoptn -DDdec turn on 2H dec */ 
 
# ifdef Ddec 
 "DELTA = taua - 2.0u - p51 - d16 - 2u - pwd - 2u - 2u - 2u + 2u + 2u + pwd 
+ de + 4u + 2u" 
  DELTA                                    ; delay 1/4JCH 
  2u pl4:f4             ; dly 2u,  set pwr pl4 dpwr3 
  (pwd one):f4          ; 2H 90(y) 
  2u pl41:f4            ; dly 2u,  set pwr pl41 dpwr3D 
  (2u cpd4 zero):f4     ; Turn on 2H decoupling - cpd4, phase x 
# else 
 "DELTA = taua - 2.0u - p51 - d16 - 2u + de + 4u + 2u" ; if !Ddec then 
compensate for all subsequent delays 
  DELTA                                    ; delay 1/4JCH 
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#endif 
 
  2u pl2:f2 
  (pwc ph3):f2                              ; C90ph3 
 
/* If zgoptn -DCOdec turn on off-resonance CO dec */ 
 
# ifdef COdec 
  2u pl22:f2 
  (2u cpds8 zero):f2  ; Turn on CO dec, cpdprg8, sync mode  
# else 
  2u 
  2u 
#endif 
 
/*  If zgoptn -DNdec turn on 15N dec */ 
# ifdef Ndec 
  2u pl31:f3   ; set power pl31 for 15N decoupling 
  (2u cpds3 zero):f3  ; Turn on 15N decoupling, cpdprg3 - waltz16 
#else 
  2u 
  2u 
# endif 
 
  tau1                               ; t1/2 
 
#ifdef comp9024090_flg 
  (pwh ph4):f1                  ; H90x 
  2u 
  (pwh*2.6667 ph5):f1           ;H 240/90  
  2u 
  (pwh ph4):f1                  ; H90x 
#else 
  (pwh ph4):f1                  ; H90x 
  2u 
  (pwh*2 ph5):f1                ; H180y 
  2u 
  (pwh ph4):f1                  ; H90x 
#endif 
 
   tau1 
 
# ifdef COdec 
  2u do:f2   ; Turn off CO decoupling  
  2u pl2:f2  ; set 13C high power 
#else 
  2u pl2:f2  ; set 13C high power 
  2u 
# endif 
 
# ifdef Ndec   
  2u 
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  2u do:f3    ; Turn off 15N decoupling on channel 3 
#else 
  2u 
  2u 
# endif 
 
  (pwc ph8):f2                 ; C90 ph8 
 
# ifdef Ddec 
  2u do:f4              ; Turn off 2H decoupling on channel 4 
  2u pl4:f4             ; dly 2u,  set pwr pl4 dpwr3 
  (pwd three):f4        ; 2H 90(-y) 
  4u BLKGRAMP 
#else 
  4u BLKGRAD 
#endif 
 
  2u pl21:f2               ; lower power for 13C decoupling 
 
  go=2 ph31 cpds2:f2        ; acquire fid with delayed 13C decoupling  
  d11 do:f2 mc #0 to 2 
  F1PH(calph(ph3, +90),calph(ph3,+180) & calph(ph31, +180) & caldel(d0, 
+in0)) 
 
#ifdef Ddec 
d11 H2_LOCK 
d11 LOCKH_OFF 
; d11 LOCKDEC_OFF ; use statement for earlier hardware 
#endif 
 
HaltAcqu, 1m 
exit 
 
ph3=0 2  
ph4=0 0 1 1 2 2 3 3 
ph5=1 1 2 2 3 3 0 0 
ph6=0  
ph7=0 0 2 2 
ph8=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 
ph31=0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2 
ph26=0 
ph27=1 
ph28=2 
ph29=3 
 
;d1 : repetition delay 
;d5 : taua ~1/4JCH 
;d11 : delay for disk i/o, 30ms 
;d16 : gradient recovery delay, 200us 
;d20 : set to exactly 1/2JCH when decoupling begins in t2 
;pl1 : tpwr - power level for pwh  
;pl2 : dhpwr - power level for hard 13C pulse pwc  
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;pl21 : dpwr - power level for  13C decoupling cpd2 
;pl22 : dpwrcodec - power level for cos modulated seduce 
;sp22 : cos modulated seduce decoupling pattern  
;spw14 : power level for eburp1 pulse 
;spnam14: eburp1 pulse on water 
;pl23 : 5 or 6dB higher power than pl21 
;pl31 : dpwr2 - power level for 15N cpd3 
;pl4 : dpwr3 - power level for 2H flipback pulses 
;pl41 : dpwr3D - power level for 2H cpd4 
;p1 : pwh 
;p14 : eburp1 pulse width, typically 7000u 
;p2 : pwc 
;p22 : pwco90 (seduce1 dec) pattern length us @ pl22 for CO decoupling 
;p31 : pwn at dpwr2 for 15N decoupling during 2*TC(~29ms) 
;p4 : pwd at dpwr3 for 2H flipback pulses 
;p41 : pwddec at dpwr3D for 2H decoupling 
;p63 : set to 1600 us 
;ni : td1/2 number of complex points in t1 
;cpd2 : 13C decoupling according to program defined by cpdprg2 
;cpd3 : 15N decoupling according to program defined by cpdprg3 
;cpd4 : 2H decoupling according to program defined by cpdprg4 
;cpd8 : 13CO decoupling according to program defined by cpdprg8 
;pcpd2:  13C 90 degree pulse at pl21 for cpd2 
;pcpd3:  15N 90 degree pulse at pl31 for cpd3 
;pcpd4:  2H 90 degree pulse at pl41 for cpd4 
;pcpd8:  seduce1 decoupling pattern length for cpd8 
;spnam22 : file name for CO decoupling 
;spnam28 : file name for higher power bilevel dec 
;spnam29 : file name for lower power bilevel dec 
;cnst1 : water(Hz) - methyl(Hz) 
;cnst2 : buffer(Hz) - methyl(Hz) 
;zgoptns : 
Df1180,DNdec,DCOdec,DDdec,Dfsat,DoneDarray,Dfscuba,Dcomp9024090_flg,Dwater_
flg,Dbuffer_flg 
 
 
Cpd file for decoupling: 
  d20 
1 pcpd*3:180 
  pcpd*4:0 
  pcpd*2:180 
  pcpd*3:0 
  pcpd  :180 
  pcpd*2:0 
  pcpd*4:180 
  pcpd*2:0 
  pcpd*3:180 
2 pcpd*3:0 
  pcpd*4:180 
  pcpd*2:0 
  pcpd*3:180 
  pcpd  :0 
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  pcpd*2:180 
  pcpd*4:0 
  pcpd*2:180 
  pcpd*3:0 
  lo to 2 times 2 
3 pcpd*3:180 
  pcpd*4:0 
  pcpd*2:180 
  pcpd*3:0 
  pcpd  :180 
  pcpd*2:0 
  pcpd*4:180 
  pcpd*2:0 
  pcpd*3:180 
  jump to 1 


