SUPPLEMENTARY INFORMATION

Less is more: A simple Methyl-TROSY based pulse scheme offers improved sensitivity
in applications to high molecular weight complexes

Nicolas Bolik-Coulon, Alexander I.M. Sever, Robert W. Harkness, James Aramini, Yuki

Toyama, D. Flemming Hansen, Lewis E Kay

Supporting Figures

1H ‘ I Ta [ta [

T T
13C I Ib bI /2 L/2 I WALTZ-16
142J,,,)
Grad_H NN 0| |
G,G,G, G,G, G,

Figure S1. Pulse sequence used to measure purged ddHMQC datasets. Narrow black (wide
white) rectangles refer to 90° (180°) pulses. The first proton pulse is a shaped pulse for water
selective excitation. The value of 7, is set to optimize sensitivity, typically less than 1/(4Jcx)
and 7, = 1/(8/Jcy) = 1 ms. Pulses are aligned along the x-axis unless otherwise indicated. The
phase cycle is: ¢1= X,-X; @2= 2(y),2(-y); ¥3= 2(x),2(y),2(-x),2(-y); 4= 2(y),2(-X),2(-y),2(x);
Ps= 8(X),8(-X); Pacq= 2(X,2(-X),X),2(-X,2(x),-x). A minimum cycle of 4 is used. Gradient
strengths (in % maximum) and durations are: G;=(10%,Ims), G=(20%,1ms),

G3=(30%,0.5ms), G4=(-15%,0.3ms). Further details are provided in the legend to Figure 1.

ddHMQC
a) HMQC b ddHMQC €) corrected baseline _d)
1 Ax10° : . 1.5x10° : #k 1.5x10°(—HMQC
— ddHMQC
ddHMQC,
corrected M
baseline

151

E A
| [o N K N IS SR
& o 1 1 1
° ! e pdly |- Hmac

- o — ddHMQC
3 ddHMQC,

corrected
F - baseline
1 N 1 ?ﬂ!f@ 1 1
- 2 1 0 -1 1 2 -1
@, - "H (ppm) ®, - 'H (ppm) @, - 'H

Figure S2. HMQC (a), ddHMQC (b) and ddHMQC with corrected baseline using in-house
written software (c; see below) for a;017, 1 GHz, 7°C. All three spectra were contoured at the
same level, with the noise level indicated on the top right of each spectrum. Horizontal dashed
lines in (a) indicate the position of cross-sections shown in (d) and (e). Section (d) is chosen

to illustrate an example of a “bad” baseline in the ddHMQC spectrum (worst of all *C
traces). Spectra are contoured at sufficiently low levels so that some noise is observed.
Notably, the quality of the baseline before correction was worse in datasets recorded at the

lower temperature, where broad lines were produced (see below).

ddHMQC

a) 10 A HMQ,C b) ddHMQC €) corrected baseline d)
o 2 aaae] [Larxaee] [™ 37x10°| - HMQC
"N At Coy . . {—ddHmac
' ddHMQC,
corrected

baseline

e
Q
3 5 1 1 I
O ‘le)
[52] BN
e 1 —HMQC

- | —ddHMQC
13 ddHMQC,

corrected
baseline

Figure S3. Similar regions as shown in Figure S2 but these spectra were recorded at 1 GHz,
40°C.

ddHMQC
a) 10 HMQC b ddHMQC c corrected baseline d)
L ** . 15x10° ‘ Cee 1.7x10° : L o %e 1.7x10°[—HMQC
. T e et e [—ddHMQC
12-" . o . oo L ddHMQC,
L PR ; : ’ corrected
baseline

. e)

—HMQC

—ddHMQC
ddHMQC,
corrected
baseline

Figure S4. The same comparison of HMQC/ddHMQC experiments as in Figure S2 but for
AaLS, 1 GHz, 40°C.

Data processing

Time-domain data are processed using a combination of nmrPipe [1] and an in-house written
python script. Below we list the scripts that have been used along with the python programs
for J-decovolution and baseline correction of ddHMQC spectra (available in electronic format
from the authors upon request).

(1) The conversion of the Bruker data into nmrPipe format is achieved using the fid.com
script:

#!/bin/csh

bruk2pipe -verb -in ./ser \
-bad 0.0 -ext -aswap -DMX -decim 1240 -dspfvs 20 -grpdly 68 \

-xN 2048 -yN 220 \
-xT 1024 -yT 110 \
-xMODE DQD -yMODE Complex \
-xSW 16129.032 -ySW 5025.068 \
-x0BS 999.201 -yOBS 251.253 \
-xCAR 1.000 -yCAR 20.000 \
-xLAB 1H -yLAB 13C \
-ndim 2 -aq2Db Complex \

| nmrPipe -fn MULT -c 3.90625e+00 \
-out ./test.fid -ov

It is important to note the -DMX flag, ensuring that the time-domain signal starts with the first
point of the FID. The python program Apodization.py (see below) used for J-deconvolution
requires this format.

(2) The residual water signal is subtracted with the water.com script:

#

nmrPipe -in test.fid

| nmrPipe -fn PS -p@ @ -pl -78721

| nmrPipe -fn POLY -time

| nmrPipe -fn PS -p@ @ -pl 78721
-out test_Apod.fid -verb 2 -ov

s s s

where the phase pl is calculated to move the center of the spectrum from 1 ppm to on-
resonance with the residual water signal, allowing proper subtraction of water. Note that

pl = $360X prs, Where A is the amount in Hz to shift the spectrum, xSW is the spectral

width in the 'H dimension, and Xpr is the number of complex points in the 'H time domain
(after conversion; we recommend loading the converted data into nmrDraw to determine the
value of Xprg, which will not be equal to xT because of the -DMX flag in the fid.com script.
The value of Xprg 1s 954 in this case).

(3) The correction of peak distortions relies on dividing the time-domain signal by sin /.yt
for >0 where decoupling is not applied (i.e., the first 1/(2Jcy) of the FID). This is performed
using the nmrglue [2] and numpy [3] Python library in the Apodization.py script:

import numpy as np
import nmrglue as ng

dic, data_orig = ng.pipe.read('test_Apod.fid")

SW = dic["FDF2SW'] #proton spectral width
npts = data_orig.shape[-1] #number of points in the proton dimension
times = np.arange(npts)/SW #times at which data-points are stored

data = data_orig.copy()
J = 125.0 #carbon-proton J-coupling constant in Hz

def Apod(t, J): #Apodization function
return np.sin(Cnp.pi * J * t)

for ¢, t in enumerate(times):
if ¢ == 0: #first point cannot be corrected
pass
else:
if t < 1./702.%1): #only correct until decoupling 1is
applied
apod = Apod(t, 1)
datal[:, c] /= apod

ng.pipe.write('test_Apod2.fid', dic, data, overwrite=True)
Comments are shown in green.
(3) Finally, the corrected time-domain signal is processed using the After apod.com script:

#

nmrPipe -in test_Apod2.fid

| nmrPipe -fn ZF -size 954

| nmrPipe -fn SP -off ©.35 -end 0.98 -pow 2.0 -c 1.0
| nmrPipe -fn ZF -size 2048

| nmrPipe -fn FT

| nmrPipe -fn PS -p@ 19.6 -pl 0.0 -di

| nmrPipe -fn EXT -x1 3.@ppm -xn -lppm -sw

| nmrPipe -fn POLY -auto -ord 1

| nmrPipe -fn TP

| nmrPipe -fn LP -fb -ord 16

| nmrPipe -fn SP -off ©0.35 -end .98 -pow 2.0 -c 1.0
| nmrPipe -fn ZF -auto

| nmrPipe -fn FT

| nmrPipe -fn PS -p@ 90 -pl 180.0 -di

VA AV A A A A Y AV A A Ay avd

| nmrPipe -fn TP
| nmrPipe -fn POLY -auto -ord 4
-out test_apod_finish.ft -verb 2 -ov

ard

There are 954 complex ¢, points in the converted (-DMX) data and
nmrPipe -fn ZF -size 954
simply ensures that this is the case.

The first point in the proton dimension is equal to O (it cannot be corrected using the
Apodization.py script), which introduces a DC baseline offset. Thus, it is essential to apply a
baseline correction before transposing and processing the carbon dimension to ensure that
linear prediction functions properly.

(4) For some applications (typically o707 at 7°C) we improve the final baseline using the
FitBaseline.py script:

import numpy as np

import nmrglue as ng

from scipy.optimize import curve_fit
import math

dic, data = ng.pipe.read('test_apod_finish.ft")
1limMin, limMax = 40, 460 #noise level will be evaluated for points

between @ and 39, and point 460 to the end; must ensure that there are no
peaks in these regions

NP_H = np.shape(data)[1] #number of points in the proton dimension
NP_C = np.shape(data)[0] #number of points in the carbon dimension
def Poly(x, coeff): #polynomial function that fits the baseline

s = 0.

for n in range(len(coeff)):

s 4= coeff[n] * x**(len(coeff) - n - 1)

return s

def Truncate(data, ppm, noise): #function to retain part of the signal

only within +-2xnoise, where noise is the noise level

trunc = []
trunc_ppm = []

span = 30 #range over which standard deviation is evaluated

for d in range(@, len(data), span):

std = np.std(data[d:d+span]) #standard deviation of the
signal in the considered portion

if abs(std) <= 2.*abs(hoise):
trunc.append(datal[d:d+span])
trunc_ppm.append(ppm[d:d+span])

trunc = np.concatenate([t for t in trunc])
trunc_ppm = np.concatenate([f for f in trunc_ppm])

return trunc, trunc_ppm

for n in range(NP_Q):
Slice = data[n, :].copyQ)

N = max(abs(Slice))
Slice /= N #Normalization of the slice

noise = np.std(np.concatenate([Slice[:1imMin], Slice[limMax:]]))
#noise level for the slice, computed using the above limits

Slice_c, uc_H_ppm_trunc = Truncate(Slice, uc_H_ppm, noise)

Coeff = np.polyfitCuc_H_ppm_trunc, Slice_c, 4) #fit to a
polynomial of degree 4

datal[n, :] -= N * Poly(Cuc_H_ppm, Coeff) #subtract the
result of the fit

ng.pipe.write('test_apod_custom.ft', dic, data, overwrite=True)

The initial part evaluates the noise level, g, on a per-cross-section basis, by only considering
the portions of the cross-section that have no signals. These portions are determined by the
values of the constants /imMin and limMax, chosen such that there are no signals for points
lower than /imMin and higher than limMax in each cross-section. Then, the parts of the cross-
section with intensities within +2¢ for a range of span points are considered to be baseline
and are fitted to a polynomial of degree 4; note that the first span points are evaluated
[0,span-1], followed by the next span points [span,2span-1] and so forth to establish the
baseline. Finally, the resulting polynomial is subtracted from the original cross-section.

Comparison of linewidths of two Lorentzian functions of different heights

We write a Lorentzian function
L) = —2 S1
w =
! Aw? + R? 1
where R;is the transverse relaxation rate of the magnetization and Aw = w — w, with w, the
peak position (rad/s). Consider a second Lorentzian function with the same linewidth at half

height but where the peak height is scaled by a factor £:

R,
Aw? + R?
We can calculate the linewidth of these Lorentzian functions, LW; and LW, (rad/s) at an
arbitrary height, say T,, B < 1, where T, = 1/R, is the height of £, (w) when w = w,:

L,(w) =k (S2)

=

w
I | =
=

LW, = 2R, (54)

m ‘

At a level close to the noise, f is very small and the linewidths can be approximated as

LW, = 2R, — (S5)

N

LW, ~ 2R, ﬁ (S6)

Thus, at a sufficiently low level, the linewidth of £, (w) is Vk smaller than that of £,(w) and
the peak of higher intensity appears broader. This is illustrated in the scheme below.

0.10

0.08

O

o

>
T

0.04 -

Intensity (s)

0.02

B T

] e O s LSS

200 -150 -100 -50 O 50 100 150 200
Offset (rad.s™)

Scheme S1. Lineshapes of two Lorentzian functions, with £, (w)=kL, (w), &=2, and w, = 0.
The linewidths at 8/R, with R,=20 s and $=0.1 are shown.

References

[1] F. Delaglio, S. Grzesiek, GeertenW. Vuister, G. Zhu, J. Pfeifer, and A. Bax, “NMRPipe:
A multidimensional spectral processing system based on UNIX pipes,” J. Biomol. NMR,
vol. 6, no. 3, pp. 257-293, Nov. 1995, doi: 10.1007/BF00197809.

[2] J.J. Helmus and C. P. Jaroniec, “Nmrglue: an open source Python package for the
analysis of multidimensional NMR data,” J. Biomol. NMR, vol. 55, no. 4, pp. 355-367,
Apr. 2013, doi: 10.1007/s10858-013-9718-x.

[3] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for
Efficient Numerical Computation,” Comput. Sci. Eng., vol. 13, no. 2, pp. 22-30, Mar.
2011, doi: 10.1109/MCSE.2011.37.

In what follows we include the pulse sequence code for the ddHMQC, as well as the cpd file
for WALTZ-16 delayed decoupling.

Pulse sequence for the ddHMQC:
/* hmqc_lek_1G_delaydec_cp

Used to record 13C 1H HMQC of methyl groups, with options for 15N, 13C
and 2H decoupling during tl
Use for D20 samples and 15N,13C decoupling turned off

Prefer to use WALTZ-16 decoupling (starting with delay of 4ms) at 3.3 kHz
B1
Modify the WALTZ-16 cpd by adding d20 at the start

Written by LEK
*/

#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>

;Define phases

#define zero ph=0.0
#define one ph=90.0
#define two ph=180.0
#define three ph=270.0

;Define Pulses
define pulse pwh

"pwh=p1" ; 1H hard pulse at power pll
define pulse pw_sll

"pw_s1l1l=p14" ; eburpl pulse
define pulse pwc

"pwc=p2" ; 13C hard pulse at power pl2
define pulse pwd

"pwd=p4" ; Z2H pulse at power pl4

;Define delays

"in@=infl/2"
"d11=30m"

define delay taua
"taua=d5" ; < 1/(4JCH) 1.8 ms

define delay taul

define delay hscuba
"hscuba=30m"

;define flags
;£1180 ; set zgoptns -Df1180

#ifdef comp9024090_flg
#ifdef 1180

"d0=(in@ - pwc*4.0/PI - pwh*4.6667 - 1lou - 2u - 2u)/2"
#else

"d0=(0.2u - pwc*4.0/PI - pwh*4.6667 - 1lou - 2u - 2u)/2"
ftendif
#else
#ifdef 1180

"do=(in@ - pwc*4.0/PI - pwh*4.0 - 1lou - 2u - 2u)/2"
#else

"d0=(0.2u - pwc*4.0/P1 - pwh*4.0 - 1lou - 2u - 2u)/2"
ftendif
ftendif

#ifdef OneDarray

#else

define loopcounter ni
"ni=tdl/2"

#endif

;Ndec ; set zgoptns -DNdec

; C0dec ; set zgoptns -DCOdec

;Ddec ; set zgoptns -DDdec

/* Assign cnsts to check validity of parameter changes */
#ifdef fsat

"cnstl® = plwl@" ; tsatpwr - set to max of 0.00005W
#endif
#ifdef water_flg

"cnstl4=spwl4d" ; power Tlevel for eburpl pulse preeceding start
sequence
#endif

"cnst21=plw21" ; dpwr pl21 - set max at 4.5W
#ifdef COdec

"cnst22=plw22" ; dpwrco pl22/sw22 - set max at 8.0W
#endif

#ifdef Ndec
"cnst31=plw31" ; dpwr2 pl31 - set max at 5.8W
#endif

#ifdef Ddec

"chst4=plw4" ; dpwr3 pl4 - set max at 10.5W
"cnhst41l=plw4l" ; dpwr3D pl4l - set max at 1.5W
#endif

#ifdef Ddec
"acqt@® = -2u - 2u - pwd - 4u - 2u"
#endif

of

1 ze

; check validity of parameters

if "do < 0.1u "
{
2u
print "warning: initial d@ value is negative - First tl point
incorrect Must LP"
ks
if "aq > 0.130"
{
2u

print "error: aq is too large <= 130 ms"
goto HaltAcqu

}

#ifdef fsat
if "cnstl0 > 0.001"
{
2u
print "error: presat power pll@ is too large"
goto HaltAcqu

}
#endif

#ifdef water_flg
if "cnstl4 > 0.015"
{
2u
print "error: power level for eburpl pulse is too large"
goto HaltAcqu

}
#endif

#ifdef COdec
if " cnst22 > 6.0"
{
2u
print "error: dpwrco pl22 too large"
goto HaltAcqu

}
#endif

#ifdef Ndec
if " cnst3l > 9.0"
{
2u
print "error: dpwr2 pl31 too large"
goto HaltAcqu

will be

}
#endif

if "pwc > 20u"
{
2u
print "error: pwc too large < 20 us"
goto HaltAcqu
3

#ifdef Ddec
if "cnst4 > 13.5"
{
2u
print "error: dpwr3 pl4 too large"
goto HaltAcqu
3

if "cnst4l > 3.0"

{

2u

print "error: dpwr3D pl41l too large"
goto HaltAcqu

3

; d11 LOCKDEC_ON ; Not required for AvanceIII-HD
50u LOCKH_ON
d11 H2_PULSE

2u pl4l:f4 ; set power pl4 for 2H flipback pulses
#endif
2 dl11 do:f2
20u fg=cnstl:fl ; jump from methyls to water
#ifdef Ddec /* D decoupling */
d1l1l H2_LOCK ; put lock channel in lock mode
om LOCKH_OFF ; turn off lock hold
#ifdef fsat /* zgoptn -Dfsat */
4u pllo:f1 ; power(tsatpwr) for presaturation
dl cw:f1l zero ; How(d1)x
4u do:fl ; cw off
2u pll:f1 ; power(tpwr)
#ifdef fscuba /* Scuba pulse sequence */
hscuba ; delay(hscuba)
(pwh zero):f1l ; H 90x180y90x

(pwh*2 one):f1l

(pwh zero):f1l
hscuba ; delay(Chscuba)
#endif /* end fscuba */

#else /*¥ if fsat is no */

2u pll:f1 ; power(tpwr)
d1 ; delay(dl)
#endif /* end if fsat */

50u LOCKH_ON
15u HZ2_PULSE

#else /* no D decoupling */

#ifdef fsat /* zgoptn -Dfsat */
4u pllo:f1 ; power(tsatpwr) for presaturation
dl cw:f1l zero ; How(d1)x
4u do:fl ; cw off
2u pll:f1 ; power(tpwr)
#ifdef fscuba /* Scuba pulse sequence */
hscuba ; delay(Chscuba)
(pwh zero):fl ; H 90x180y90x

(pwh*2 one):f1l
(pwh zero):f1l

hscuba ; delay(hscuba)

#endif /* end fscuba */

#else /* if fsat is no */

2u pll:f1 ; power(tpwr)

di ; delay(dl)
#endif /* end if fsat */
#endif /* end of D_decoupling */
#ifdef Ddec

20u UNBLKGRAMP ; dly 20Qu, unblank gradients
#else

20u UNBLKGRAD ; dly 20Qu, unblank gradients and lock hold
#endif

#ifdef water_flg
; how apply eburpl pulse

2u
(pw_s1ll:spl4 zero):fl
2u

#endif

2u
p50:gp0*0.5 ; gradient 0*0.5
dle

#ifdef buffer_flg
20u fg=cnst2:f1 ; jump from methyls to buffer
2u

(pw_s1ll:spl4 zero):fl
2u
#endif

10u fg=0:f1
2u pll:f1
2u pl2:f2
2u pl31:f3

; jump back to methyls

(pwc zero):f2 ; C90x - To destroy 13C Boltzman magnetization

2u

(p50:gp2) ; gradient @

dlo
; This is the real start
"taul = do"

if "taul < 0.2u" {
"taul = 0.2u"
3

(pwh zero):f1l

2u
p51:gpl
die

; H90x

; gradient 1

"DELTA = taua - 2.Qu - p51 - dle - pwh*2.0/PI"

DELTA

(center(pwh*2 ph26):fl (pwc*2.0 ph26):f2)

2u
p51:gpl
die

; gradient 1

/* If zgoptn -DDdec turn on 2H dec */

ifdef Ddec

"DELTA = taua - 2.0u - p51 - d16 - 2u - pwd - 2u - 2u - 2u + 2u + 2u + pwd

+ de + 4u + 2u"
DELTA
2u pl4:f4
(pwd one):f4
2u pl4l:f4
(2u cpd4 zero):f4
else

’

’

’

’

; delay 1/4JCH

; dly 2u, set pwr pl4 dpwr3
; 2H 90(y)
; dly 2u, set pwr pl4l dpwr3D

"DELTA = taua - 2.0u - p51 - dl6 - 2u + de + 4u + 2u"
compensate for all subsequent delays

DELTA

; delay 1/4JCH

)

; Turn on 2H decoupling - cpd4, phase x

if

IDdec then

#endif

2u pl2:f2
(pwc ph3):f2 ; C90ph3

/* If zgoptn -DCOdec turn on off-resonance CO dec */

ifdef COdec

2u pl22:f2

(2u cpds8 zero):f2 ; Turn on CO dec, cpdprg8, sync mode
else

2u

2u
#endif

/* If zgoptn -DNdec turn on 15N dec */
ifdef Ndec
2u pl31:f3 ; set power pl31l for 15N decoupling
(2u cpds3 zero):f3 ; Turn on 15N decoupling, cpdprg3 - waltzl6
#else
2u
2u
endif

taul ; t1/2

#ifdef comp9024090_flg

(pwh ph4):f1 ; H9Ox

2u

(pwh*2.6667 ph5):f1l ;H 240/90

2u

(pwh ph4):f1 ; H9Ox
#else

(pwh ph4):f1 ; H9Ox

2u

(pwh*2 ph5):f1 ; H180Qy

2u

(pwh ph4):f1 ; H9Ox
#endif

taul

ifdef COdec

2u do:f2 ; Turn off CO decoupling
2u pl2:f2 ; set 13C high power
#else
2u pl2:f2 ; set 13C high power
2u
endif

ifdef Ndec
2u

2u do:f3 ; Turn off 15N decoupling on channel 3
#else

2u

2u
endif

(pwc ph8):f2 ; C90 ph8

ifdef Ddec
2u do:f4 ; Turn off 2H decoupling on channel 4
2u pl4:f4 ; dly 2u, set pwr pl4 dpwr3
(pwd three):f4 ; 2H 90(-y)
4u BLKGRAMP
#else
4u BLKGRAD
#endif

2u pl21:f2 ; Lower power for 13C decoupling

go=2 ph31 cpds2:f2 ; acquire fid with delayed 13C decoupling

d11l do:f2 mc #0 to 2

F1PHCcalph(ph3, +90),calph(ph3,+180) & calph(ph31, +180) & caldel(do,
+1n0))

#ifdef Ddec

dl1l HZ2_LOCK

d11l LOCKH_OFF

; d11 LOCKDEC_OFF ; use statement for earlier hardware
#endif

HaltAcqu, 1m
exit

oSN
oSN

000022222222
ph31=0 2 2 0 022020022002
ph26=0
ph27=1
ph28=2
ph29=3

;dl : repetition delay

;d5 @ taua ~1/4JCH

;d11 : delay for disk i/o, 3@ms

;d16 : gradient recovery delay, 200Qus

;d20 : set to exactly 1/2JCH when decoupling begins in t2
;pl1l @ tpwr - power level for pwh

;pl2 @ dhpwr - power level for hard 13C pulse pwc

;pl21 : dpwr - power level for 13C decoupling cpd2
;pl22 : dpwrcodec - power level for cos modulated seduce
;Sp22 : cos modulated seduce decoupling pattern

;spwld . power level for eburpl pulse

;spnaml4: eburpl pulse on water

;pLl23 : 5 or 6dB higher power than pl21

;pl31 : dpwr2 - power level for 15N cpd3

;pl4 @ dpwr3 - power level for 2H flipback pulses

;pl4l : dpwr3D - power level for 2H cpd4

;pl @ pwh
;pl4 : eburpl pulse width, typically 7000u
;p2 1 pwcC

;p22 @ pwco90 (seducel dec) pattern length us @ pl22 for CO decoupling
;p31 : pwn at dpwr2 for 15N decoupling during 2*TC(~29ms)

;p4 . pwd at dpwr3 for 2H flipback pulses

;p41 : pwddec at dpwr3D for 2H decoupling

;p63 : set to 1600 us

;ni ¢ tdl/2 number of complex points in tl

;cpd2 : 13C decoupling according to program defined by cpdprg2
;cpd3 : 15N decoupling according to program defined by cpdprg3
;cpd4 : 2H decoupling according to program defined by cpdprg4
;cpd8 : 13C0 decoupling according to program defined by cpdprg8
;pcpd2: 13C 90 degree pulse at pl2l for cpd2

;pcpd3: 15N 90 degree pulse at pl3l for cpd3

;pcpd4: 2H 90 degree pulse at pl4l for cpdé

;pcpd8: seducel decoupling pattern length for cpd8

;spnam22 : file name for CO decoupling

;spnam28 : file name for higher power bilevel dec

;spnam29 . file name for lower power bilevel dec

;enstl : water(Hz) - methyl(Hz)

;cnst2 @ buffer(Hz) - methyl(Hz)

yzgoptns

Df1180,DNdec,DCOdec,DDdec,Dfsat,DoneDarray,Dfscuba,Dcomp9024090_f1g,Dwater_

flg,Dbuffer_flg

Cpd file for decoupling:
d20

1 pcpd*3:180
pcpd*4:0
pcpd*2:180
pcpd*3:0
pcpd :180
pcpd*2:0
pcpd*4:180
pcpd*2:0
pcpd*3:180

2 pcpd*3:0
pcpd*4:180
pcpd*2:0
pcpd*3:180
pcpd :0

pcpd*2:180
pcpd*4:0
pcpd*2:180
pcpd*3:0
lo to 2 times 2
pcpd*3:180
pcpd*4:0
pcpd*2:180
pcpd*3:0
pcpd :180
pcpd*2:0
pcpd*4:180
pcpd*2:0
pcpd*3:180
jump to 1

