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A B S T R A C T   

NMR studies exploit spin relaxation in a multitude of different ways, providing information on molecular 
structure and dynamics. Calculating the relaxation rates of NMR active nuclei in multi-spin systems is often a 
prerequisite for the proper analysis of experimental data. For many researchers the calculations appear complex, 
often involving different basis sets or expressions describing relaxation in different frames. In this tutorial paper 
we derive expressions for dipolar relaxation of an I-S two spin spin-system in the presence of a B1 radio frequency 
field, where spins I and S can be either like or unlike. We consider two different approaches for the derivation of 
relaxation elements that have been used in the literature, including one where a series of transformations are 
carried out to the interaction representation of the effective field, comprising B1 and Zeeman components. A 
second procedure is based on the well-known Solomon equations. We show that both approaches lead to 
identical results, in the process presenting a pedagogical description of relaxation theory.   

1. Introduction 

Solution nuclear magnetic resonance spectroscopy is a powerful 
technique for characterizing molecular structure and dynamics, 
exploiting, in many cases, various nuances of spin relaxation. Included 
in the portfolio of relaxation studies are those that involve application of 
a B1 field, often providing unique information. For example, rotating 
frame Overhauser enhancement spectroscopy (ROESY) [1,2], initially 
called cross-relaxation appropriate for minimolecules emulated by 
locked spins (CAMELSPIN) [1], takes advantage of the fact that in the 
presence of a B1 field cross-relaxation in the transverse plane occurs 
between spins, establishing through-space internuclear connectivity in 
medium-sized molecules where it can be the case that longitudinal 
cross-relaxation, which forms the basis of nuclear Overhauser effect 
spectroscopy (NOESY), is not observed. ROESY experiments can be 
conducted with the B1 field applied in an off-resonance manner 
(off-resonance ROESY) so as to suppress Hartmann-Hahn magnetization 
transfer or to selectively observe the correlated motion of two nuclei by 
carefully choosing the offset and the B1 field strength [3–5]. Further, 
application of a variable strength B1 field can be used to modulate 
dephasing of coherences from chemical exchange, providing valuable 

information about the conformational dynamics of molecules occurring 
on a micro- to milli-second time-scale. This class of experiments has 
been extensively utilized to quantitatively characterize functionally- 
related motions of proteins and nucleic acids [6–9]. 

To date, a number of publications have presented the theory for spin 
relaxation in the presence of a B1 field. Beginning from the quantum 
mechanical and semi-classical treatment of spin relaxation [10], Jones 
derived the well-known spin-lattice relaxation time of magnetization 
aligned along an effective field (T1ρ), focusing on two dipolar-coupled 
identical spins [11]. The calculation was performed via a number of 
coordinate transformations so that the effects of evolution due to 
chemical shift and the B1 field were both ultimately included in the 
dipolar Hamiltonian that was described in a tilted doubly rotating 
frame, the so called interaction representation of the effective field. The 
resulting relaxation equations were then simplified according to the 
“secular approximation”, neglecting rapidly evolving time-dependent 
terms, as described in detail in Redfield’s treatment of relaxation [12, 
13]. Kuwata and Schleich have considered the case of a pair of unlike, 
dipolar coupled spins [14], using a formalism similar to that of Jones. In 
this case where the two interacting spins have different chemical shifts 
and when the applied B1 field is not sufficiently strong so as to render the 
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effective shift differences negligible, a larger number of components of 
the Redfield relaxation matrix oscillate rapidly, at rates much larger 
than the relaxation of the individual coherences, relative to the case for 
like spins. Such terms do not contribute to the evolution of magnetiza
tion. In this sense, the application of a B1 field can alter the structure of 
the relaxation matrix, in a manner that depends on the chemical shift 
differences between interacting spins and on the B1 field strength. The 
approach of Jones was subsequently further extended to the calculation 
of T1ρ, and the relaxation time of magnetization perpendicular to the 
effective field (T2ρ), considering a number of different relaxation 
mechanisms [15], and anisotropic motions [16]. Calculations involving 
J-coupled multi-spin systems [17,18] and of heteronuclear two-spin 
systems have also being carried out [19,20]. 

An alternative, equally valid way of calculating spin relaxation in the 
presence of a B1 field is one where evolution of the spin system due to 
relaxation, described by the Solomon equations [21], is separated from 
evolution due to Zeeman and B1 fields [12,22–24], in contrast to the 
method of Jones [11]. This approach holds true for any B1 field that 
might reasonably be considered in solution NMR [24], with the final 
result valid for both like and unlike spins. This, alternative, and less 
mathematically demanding formalism is commonly used to describe 
rotating-frame relaxation (R1ρ) experiments for identifying and charac
terizing chemical exchange processes occurring on a microsecond to 
millisecond timescale [6,25,26] 

As the spin gymnastics involved in the two approaches are somewhat 
different, we were interested in examining each in some detail, using a 
common formalism, with a pedagogical description of the results. We 
emphasize that the theoretical framework described here is not novel, 
and our intent is not to present original research. Rather, the goal of this 
tutorial paper is to provide an example of how seemingly different spin 
relaxation formalisms can lead to identical final answers, in the process 
showing how the secular approximation plays differently into both 
methods, by considering the example of relaxing spin-pairs in the 
presence of a weak B1 field. 

2. Results and discussion 

In what follows we consider the auto- and cross-relaxation of two 
dipolar-coupled homonuclear spin ½ particles, denoted as I and S, in the 
presence of a B1 field, with an arbitrary chemical shift difference. 
This spin-system is well-suited to describe 1H-1H spin relaxation in 
on-/off-resonance ROESY experiments, for example. For simplicity, we 
neglect coupling of the spins to a lattice (i.e., the return of magnetization 
back to its equilibrium position), although this could be easily added in 
an ad hoc manner [12,22–24,27]. In many applications phase cycling of 
pulses ensures that, in fact, rather than evolving to equilibrium, 
magnetization relaxes towards zero when the average over the complete 

phase cycle is considered [28]. 

2.1. Calculation of relaxation elements via the method of Jones 

2.1.1. Coordinate transformations 
We first consider a series of coordinate transformations that ulti

mately place all the chemical shift and B1 field dependencies in a revised 
dipolar Hamiltonian [11] which is then used to calculate relaxation 
rates, with retention of only those terms that are secular. We begin by 
briefly reviewing the frames that will be used, as summarized in Fig. 1. 
These include (i) the laboratory frame (xlab, ylab, zlab), where the z-axis is 
pointed along the static B0 field, (ii) the rotating frame (x, y, z) that 
rotates about the static magnetic field at the Larmor frequency (ω0) of 
the two dipolar coupled homonuclear spins (not including their chem
ical shift offsets), (iii) the tilted frame (x′, y′, z′), generated by tilting the 
rotating frame about the y-axis through an angle θ so that the z′-axis is 
along the effective field given by the vector sum of the (residual) Zeeman 
and B1 fields in the rotating frame, the latter applied along the x-axis, 
and, finally, (iv) a tilted doubly rotating frame (x′′, y′′, z′′), corresponding 
to the interaction representation of the effective field. Note that when 
the offset frequencies of the two spins are different, the tilt-angle and 
tilted doubly rotating frame for each spin are distinct, so that separate 
transformations must be performed for each spin (tilting of z′ followed 
by rotation about z′′), as illustrated below. We derive expressions for the 
relaxation matrix components in a basis of cartesian spin operators (Ix, 
Iy, Iz, Sx, Sy, and Sz), in the final (x′′, y′′, z′′) frame, that is subsequently 
compared with an approach based on the Solomon equations [21], 
described in a following section. 

Consider a B1 field of magnitude 2ω1 oscillating at ω0 along the x-axis 
in the laboratory frame. The Hamiltonian, Ĥ lab in this frame (rad/s) is 
defined as follows, 

Ĥ lab = ωIIlab
z + ωSSlab

z + 2ω1cos(ω0t)
(
Ilab

x + Slab
x

)
+ Ĥ lab

DD(t) (1)  

where ωI and ωS are the precession frequencies of spins I and S, and 
Ĥ lab

DD(t) is the time-dependent dipolar Hamiltonian in the laboratory 
frame [12,29]. Note that each operator term in the laboratory frame is 
indicated with a superscript “lab”. The transformation of the dipolar 
Hamiltonian will be described in the following section (The dipolar 
Hamiltonian in the tilted doubly rotating frame). 

The first coordinate transformation involves the rotation of the sys
tem at a frequency of ω0 about the z-axis (Fig. 1A). The operative 
Hamiltonian in this first rotating frame (Ĥ ) is given by 

Fig. 1. Coordinate transformations used in this work. (A) Transformation from the laboratory frame (xlab, ylab, zlab) (blue) to the frame (x, y, z) rotating about the z- 
axis at a frequency of ω0 (black). (B) Transformation from the rotating frame (x, y, z) (black) to the tilted frame (x′, y′, z′) where the z-axis is rotated about the y-axis 
by an angle θ (tanθ= ω1/Ω, where ω1 is the B1 field strength and Ω is the offset frequency, rad/s; the B1 field is applied along the x-axis) (red). (C) Transformation 

from the tilted frame (x′, y′, z′) (red) to the tilted doubly rotating frame (x′′, y′′, z′′), which rotates about the z′-axis at a frequency of (ωeff =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
1 + Ω2

√

) (turquoise). 
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Ĥ = Ulab Ĥ labUlab− 1 − iUlab d
dt

Ulab− 1

≈ (ωI − ω0)Iz + (ωS − ω0)Sz + ω1(Ix + Sx) + Ĥ DD(t)

= ΩI Iz + ΩSSz + ω1(Ix + Sx) + Ĥ DD(t)

Ulab = exp
(
iω0Ilab

z t
)
exp

(
iω0Slab

z t
)

(2)  

where Ulab is the unitary operator that transforms the laboratory frame 
into the rotating frame, Ωi (= ωi ¡ ω0) is the offset frequency of spin i 
from the carrier placed at the Larmor frequency (ω0) and Ĥ DD(t) (=
Ulab Ĥ lab

DD(t)U
lab− 1) is the dipolar Hamiltonian in the rotating frame. The 

second term in the first line of Eq. 2 derives from the time-dependence of 
the unitary operator Ulab [29]. As is routinely done, the B1 field term 
oscillating at 2ω0 in the rotating frame, giving rise to the so called 
Bloch-Siegert shift [30], has been ignored. 

In a second transformation the rotating frame is tilted by θi about the 
y-axis, where tanθi = ω1/Ωi, so that the resulting z′-axis (axes in the tilted 
frame are denoted with a prime) is parallel to the effective field 
(Fig. 1B). When the two spins have different chemical shift offsets this 
transformation is performed as two successive rotations with distinct 
angles, θI and θS, about the y-axis (one for each spin), as shown below in 
the derivation of the effective Hamiltonian in the tilted frame (Ĥ

′ ) 

Ĥ
′

= UĤ U− 1

= (ω1sinθI + ΩIcosθI)I
′

z + (ω1sinθS + ΩScosθS)S
′

z + Ĥ
′

DD(t)

= ωI,eff I
′

z + ωS,eff S
′

z + Ĥ
′

DD(t)
U = exp

(
iθI Iy

)
exp

(
iθSSy

)

(3)  

where U is the unitary operator that transforms the rotating frame into 

the tilted frame, ωi,eff (=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
1 + Ω2

i

√

) is the effective frequency of spin i, 

and Ĥ
′

DD(t)(= UĤ
′

DD(t)U
− 1) is the dipolar Hamiltonian in the tilted 

frame. Spin angular momentum operators in the rotating (first) frame 
and those in the tilted (second) frame are related according to 

Ix = I ′

xcosθI + I ′

zsinθI

Iy = I ′

y

Iz = I ′

zcosθI − I ′

xsinθI

Sx = S
′

xcosθS + S
′

zsinθS

Sy = S′

y

Sz = S′

zcosθS − S′

xsinθS

(4)  

Finally, one last coordinate transformation is performed to eliminate the 
time-independent parts of the Hamiltonian (i.e., terms proportional to I′z 

and S′

z). This can be accomplished with two successive transformations 
about the z′-axes with frequencies of ωI,eff and ωS,eff, similar to the 
transformations from the laboratory to the rotating frames (Eq. 2) 
(Fig. 1C). The operative Hamiltonian in the tilted doubly rotating frame 
(Ĥ ′′) is given by 

Ĥ ′′ = U′

Ĥ
′ U′ − 1 − iU′ d

dt
U′ − 1

= Ĥ ′′
DD(t)

U′

= exp
(
iωI,eff I

′

zt
)
exp

(
iωS,eff S

′

zt
)

(5)  

where U′ is the operative unitary transformation. All of the time- 

independent terms (Eq. 3) have now been incorporated into the 
dipolar Hamiltonian in the tilted doubly rotating frame (Ĥ ′′

DD(t) =

U′

Ĥ
′

DD(t)U
′ − 1). It is thus straightforward to calculate the Redfield 

relaxation matrix in this final frame and then to intuit what the indi
vidual relaxation terms mean in terms of the evolution of magnetization 
(see below). 

2.1.2. The dipolar Hamiltonian in the tilted doubly rotating frame 
Before proceeding further the dipolar Hamiltonian in the tilted 

doubly rotating frame (Ĥ ′′
DD(t)) must be calculated, as described pre

viously [11]. Table S1 lists all of the terms for the dipolar Hamiltonian in 
the rotating frame, Ĥ DD(t); the subsequent transformations expand the 
number of terms considerably and place all of the time-dependence of 
the spin system explicitly in Ĥ ′′

DD(t), as shown in detail below, where we 
illustrate how these transformations are accomplished. We begin by 
representing the dipolar Hamiltonian in the laboratory frame using the 
spin tensor operators Aq

p and the spatial variables Fq(β,φ) of rank q and 
order p as follows, 

Ĥ lab
DD(t) = d0

∑+2

q=− 2

∑

p
Aq

pFq(β,φ)

d0 = −
̅̅̅
6

√ (μ0

4π

) γ2ℏ
r3

IS

(6)  

where β and φ are time-dependent angles defining the orientation of the 
vector connecting spins I and S in the lab frame, rIS is the distance be
tween the two spins, γ is the gyromagnetic ratio (here assuming 
γ = γI = γS), ℏ is Planck’s constant divided by 2π, and μ0 is the perme
ability of free space [12,29]. Thus, Eq. [6] makes it clear that changes in 
the orientation of the dipole vector with respect to the magnetic field 
from molecular tumbling or internal dynamics, or fluctuations of the 
inter-nuclear distance, rIS, give rise to time dependent dipolar fields that 
produce the relaxation of interest (i.e., modulation of Ĥ lab

DD(t)). In what 
follows we consider only isotropic overall motion as the source of the 
fluctuations. As mentioned above, Table S1 lists the Aq

p and Fq(β,φ)
values that are germane in this case. 

Ĥ lab
DD(t) is initially transformed to the rotating frame using the uni

tary rotations defined in Eq. 2 

Ĥ DD(t) = Ulab Ĥ lab
DD(t)U

lab− 1

= d0

∑+2

q=− 2

∑

p
Aq

pFq(β,φ)exp
(

iωq
pt
) (7)  

which follows directly from the fact that [Ĥ 0,Aq
p ] = ωq

pAq
p , where Ĥ 0 (=

ω0(Iz + Sz)) is the Hamiltonian used for the transformation into the 
rotating frame, Eq. 2 [29]. Thus, it follows that the operators Aq

p are 

eigenstates of the Liouvillian ̂̂H 0 (= [Ĥ 0, ]; in what follows we denote 
superoperators, such as the Liouvillian, with double hats), with eigen
values (eigenfrequencies) ωq

p. 
The second and the third transformations can be similarly performed 

using the unitary rotations defined in Eqs. 3 and 5, respectively, 
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Ĥ ′′
DD(t) = U′ UĤ DD(t)U− 1U′ − 1

= d0

∑+2

q=− 2

∑

p
A

′ ′ q
pFq(β,φ)exp

(
iω′ ′ q

pt
) (8)  

whereby Ĥ DD(t) is successively transformed into the tilted and then 
tilted doubly rotating frames. The transformation into the tilted frame 
(U) “spreads out” each spin tensor operator (Aq

p) into multiple terms (for 
example, starting from Aq

p ∝ IzSz (q=0, p=0; Table S1) it can be shown 
that IzSz → I′zS′

z, I′+S′
z, I′¡S′

z, I′zS′+, I′zS′¡, I′+S′+, I′+S′¡, I′¡S′+, and 
I′¡S′¡ with coefficients that depend on θ; Table S2), leading to many 
more coherence orders p for each q. In addition, the final transformation 
(U′ ) leads to a net modulation of exp(iω′ ′ q

pt) and as a consequence, the 

frequencies for each term comprising Ĥ ′′
DD(t) are now dependent on the 

effective fields of I and S (ωI,eff and ωS,eff) that are, in turn, a function of 
the B1 field strength (ω1) and offset frequencies (ΩI and ΩS) (Table S2). 
As discussed below, these frequency terms determine which of the many 
possible combinations of spin operators in Ĥ ′′

DD(t) give rise to non-zero 
contributions to relaxation; many of these combinations are irrelevant 
since they lead to oscillations that average to zero much more rapidly 
than the decay of the density elements from relaxation. 

In summary, Eq. 9 below illustrates how the Liouville-von Neuman 
equation for the density operator “evolves” with the different coordinate 
transformations described above, showing that the time-independent 
part of the Hamiltonian is progressively simplified in the process. This 
“evolution” has important implications for evaluating the relaxation 
elements, as discussed below, since the frequencies of evolution of the 
spin operator components of the relaxation Hamiltonian can change 
between frames (compare ωq

p and ω′ ′ q
p values for Aq

p , Table S1, and A′ ′ q
p , 

Table S2).  

2.1.3. Calculation of relaxation 
Having derived the operative Hamiltonian in the tilted doubly 

rotating frame it is now possible to calculate the Redfield relaxation 
matrix components using Eqs. 8 and 10 

dσ′′(t)
dt

= −

∫ ∞

0
[Ĥ ′′

DD(t),
[
Ĥ ′′

DD(t − τ), σ′′(t)
]]

dτ

= −
̂̂Γ ′′σ′′(t)

(10)  

where ̂̂Γ ′′ denotes the relaxation superoperator (double prime indicates 
that the relaxation expressions correspond to those for the tilted doubly 
rotating frame) and the top bar inside the integral represents an 
ensemble average [12,13]. Expanding the density matrix in terms of 
product operators, σ′′(t) =

∑

s
b′′s (t)B′′

s [31], where the time dependence 

associated with the evolution of each of the operators B′′
s in the tilted 

doubly rotating frame is subsumed in b′′s (t), Eq. 10 reduces to 

db′′
r (t)
dt

= −
∑

s

〈
B′′

r |

∫ ∞

0

[
Ĥ ′′

DD(t),
[
Ĥ ′′

DD(t − τ),B′′
s

]]
〉

dτ
〈
B′′

r |B
′′
r

〉 b′′
s (t)

= −
∑

s

̂̂Γ ′′
rsb

′′
s (t)

(11)  

with the time-dependence introduced by the coordinate frame trans
formation of Eq. 8 contained within Ĥ ′′

DD(t). Replacing Ĥ ′′
DD(t) by the 

relation in Eq. 8, yields          

Evolution of density matrix Hamiltonian

Laboratory frame
dσlab(t)

dt
= − i

[
Ĥ lab, σlab(t)

]
Ĥ lab = ωIIlab

z + ωSSlab
z + 2ω1cos(ω0t)

(
Ilab

x + Slab
x

)
+ Ĥ

lab

DD(t)

(xlab, ylab, zlab)

↓ ↓

Rotating frame
dσ(t)

dt
= − i[Ĥ , σ(t)] Ĥ = ΩI Iz + ΩSSz + ω1(Ix + Sx) + Ĥ DD(t)

(x, y, z) (ΩI = ωI − ω0, ΩS = ωS − ω0)

↓ ↓

Tilted frame
dσ′

(t)
dt

= − i[Ĥ
′

, σ′

(t)] Ĥ
′

= ωI,eff I
′

z + ωS,eff S
′

z + Ĥ
′

DD(t)

(x
′

, y
′

, z
′

)

(

ωI,eff =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
1 + Ω2

I

√

, ωS,eff =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
1 + Ω2

S

√ )

↓ ↓

Tilted doubly rotating frame
dσ′′(t)

dt
= − i[Ĥ ′′, σ′′(t)] Ĥ ′′ = Ĥ ′′

DD(t)

(x′′, y′′, z′′)

(9)   
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where δω′ ′q
p ,− ω′ ′ − q

p′
is the Kronecker delta, and the time-dependence of the 

orientation of the I-S inter-nuclear vector in the rotating frame is given 
by Ω(t) = {β(t),φ(t)}. A factor of 1/2 is introduced in the second line to 
account for the extension of the integral to cover the range -∞ to ∞ in 
the spectral density function presented below. Importantly, Eq. 12 in
dicates that the sum of eigenfrequencies of operators A′ ′ q

p and A′ ′ − q
p′ , ω′ ′ q

p 

+ ω′ ′ − q
p′ , determines whether a particular double commutator term 

contributes to relaxation or not via what is referred to as the secular 
approximation. When ω′ ′ q

p + ω′ ′ − q
p′ is much larger than the relaxation 

rates of the operative density elements (typically on the order of 0.1-102 

s− 1), there is no contribution to relaxation because the term in question 
is rapidly averaged between − 1 and 1 over the much slower timescale of 
relaxation (the term is called non-secular). Thus, in the calculation, 
commutator terms are only considered when ω′ ′ q

p = − ω′ ′ − q
p′ (the terms 

are called secular), enforced by δω′ ′ q
p ,− ω′ ′ − q

p′
in lines 3 and 4 of Eq. 12. It is 

noteworthy that rotations to different coordinate frames, Eq. 9, effec
tively transfer the chemical shift and B1 field terms to the dipolar 
Hamiltonian such that what is secular in one frame can become non- 
secular in another frame. By means of a trivial example, consider the 
expression for Ĥ ′

DD(t) (the dipolar Hamiltonian in the tilted frame), that 
is given in Table S2 with the modification that ω′ ′ q

p = qω0 (last column), 

and all double primes become single primes. Thus, ω′ q
p = − ω′ − q

p′ for each 
of the nine terms associated with a given value of q and − q. In contrast, 
in the tilted doubly rotating frame a much smaller number of terms 
satisfy the relation ω′ ′ q

p = − ω′ ′ − q
p′ (i.e., are secular). Of course, as we 

illustrate below, the net evolution of the density matrix is the same in 
both frames, considering all terms (both dipolar and non-dipolar) that 
contribute to the Hamiltonian of the system. 

Assuming random Brownian isotropic motion characterized by a 
rotational correlation time τcorr, J(ω) depends on the spatial component 
of Ĥ ′′

DD(t) as follows 

J(ω) = Re
{∫ ∞

− ∞
Fq*(Ω(t))Fq(Ω(t − τ))exp(− iωτ)dτ

}

=
2
5

τcorr

1 + ω2τ2
corr

(13)  

where “Re” indicates the real component of the integral [12,29]. As 
listed in Table S2, each term of Ĥ ′′

DD(t) is associated with a unique 
frequency, ω′ ′ q

p, and accordingly, many different J(ω′ ′ q
p) terms poten

tially need to be considered when calculating relaxation rates [11,15]. 
However, for typical ω1, ΩI, and ΩS values considered in solution NMR, 
it follows that ω0≫ωI,eff , ωS,eff , and that ωI,eff τcorr, ωS,eff τcorr≪1, and, thus, 
only three spectral density terms need be considered, 

J(0) = J
(
±ωI,eff

)
= J

(
±ωS,eff

)
= J

(
±
⃒
⃒ωI,eff ±ωS,eff

⃒
⃒
)

J(ω0) = J
(
ω0 ±ωI,eff

)
= J

(
ω0 ±ωS,eff

)
= J

(
ω0 ±

⃒
⃒ωI,eff ±ωS,eff

⃒
⃒
)

J(2ω0) = J
(
2ω0 ±ωI,eff

)
= J

(
2ω0 ±ωS,eff

)
= J

(
2ω0 ±

⃒
⃒ωI,eff ±ωS,eff

⃒
⃒
)

(14)  

Although we have indicated the simplest form of J(ω) in Eq. 13, other 
spectral density functions that include additional motional parameters, 
discussed in the context of the model-free formalism [32,33], for 
example, may be more appropriate. 

2.1.4. Relaxation matrix for like spins 
Using Eqs. 12-14, we are now ready to calculate Redfield relaxation 

matrices. Here we describe the evolution of the I-S spin system using the 
density matrix expanded in a Cartesian product basis, σ′′(t) =

[I′′x , I′′y , I′′z , S′′
x, S′′

y , S′′
z ]

+, where + denotes transpose, and the double prime 
indicates that the coordinate system is the tilted doubly rotating frame. 
In this section it is assumed that spins I and S are “like” [12], so that 
either their chemical shift difference is sufficiently small and/or the 
applied B1 field is sufficiently strong, such that their effective fre
quencies are the same (ωI,eff = ωS,eff). Thus, a single tilt angle (θ = θI = θS) 
and offset frequency (Ω = ΩI = ΩS) is sufficient to describe the system. 

In what follows we will express the calculated relaxation rates in 
terms of those derived in the laboratory frame [4,29], 

R1 =
1
4

(μ0

4π

)2γ4ℏ2

r6
IS

(J(0) + 3J(ω0) + 6J(2ω0))

R2 =
1
8

(μ0

4π

)2γ4ℏ2

r6
IS

(5J(0) + 9J(ω0) + 6J(2ω0))

σROE =
1
4

(μ0

4π

)2γ4ℏ2

r6
IS

(2J(0) + 3J(ω0))

σNOE =
1
4

(μ0

4π

)2γ4ℏ2

r6
IS

( − J(0) + 6J(2ω0))

(15)  

where R1 and R2 are the longitudinal and transverse relaxation rates of 
dipolar-coupled spins I and S, and σROE and σNOE are the transverse and 
longitudinal cross-relaxation rates, respectively. As presented below, 
each component of the relaxation matrix in the tilted doubly rotating 
frame can be rewritten in terms of a relatively simple combination of the 
terms in Eq. 15, providing a more intuitive picture of relaxation. After 
tedious but straightforward calculations, the Redfield relaxation matrix 
̂̂Γ ′′ describing the evolution of σ′′(t) = [I′′x , I′′y , I′′z , S′′

x, S′′
y , S′′

z ]
+ is given by, 

̂̂Γ ′′
rs = d2

0

∑

q,q′

∑

p,p′
exp

(
i
(

ω′′q
p + ω′′q′

p′

)
t
)
〈

B′′
r |
[
A′ ′q′

p′ ,
[
A′ ′q

p,B
′′
s

]]〉

〈
B′′

r |B
′′
r

〉

∫ ∞

0
Fq′ (Ω(t))Fq(Ω(t − τ))exp

(
− iωq

pτ
)

dτ

=
d2

0

2
∑

q,q′

∑

p,p′
exp

(
i
(

ω′′q
p + ω′′q′

p′

)
t
)
〈

B′′
r |
[
A′ ′q′

p′ ,
[
A′ ′q

p,B
′′
s

]]〉

〈
B′′

r |B
′′
r

〉

∫ ∞

− ∞
Fq′ (Ω(t))Fq(Ω(t − τ))exp

(
− iωq

pτ
)

dτ

≃
d2

0

2
∑

q

∑

p,p′
δω′ ′q

p ,− ω′ ′ − q
p′

〈
B′′

r |
[
A′ ′ − q

p′ ,
[
A′ ′q

p,B
′′
s

]]〉

〈
B′′

r |B
′′
r

〉

∫ ∞

− ∞
F− q(Ω(t))Fq(Ω(t − τ))exp

(
− iωq

pτ
)

dτ

=
d2

0

2
∑

q

∑

p,p′
δω′ ′q

p ,− ω′ ′ − q

p′

〈
B′′

r |
[
A′ ′ − q

p′ ,
[
A′ ′q

p,B
′′
s

]]〉

〈
B′′

r |B
′′
r

〉 (− 1)q
∫ ∞

− ∞
Fq*(Ω(t))Fq(Ω(t − τ))exp

(
− iωq

pτ
)

dτ

(12)   
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dσ′′(t)
dt

= −
̂̂Γ ′′σ′′(t)

d
dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I′′x
I′′y
I′′z
S′′

x

S′′
y

S′′
z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R′′
11 0 0 R′′

14 0 0

0 R′′
22 0 0 R′′

25 0

0 0 R′′
33 0 0 R′′

36

R′′
41 0 0 R′′

44 0 0

0 R′′
52 0 0 R′′

55 0

0 0 R′′
63 0 0 R′′

66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I′′x
I′′y
I′′z
S′′

x

S′′
y

S′′
z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)  

with 

R′′
11 = R′′

22 = R′′
44 = R′′

55 = R2cos2θ +
R2 + R1

2
sin2θ

R′′
33 = R′′

66 = R1cos2θ + R2sin2θ

R′′
14 = R′′

41 = R′′
25 = R′′

52 = σROEcos2θ +
σROE + σNOE

2
sin2θ

R′′
36 = R′′

63 = σNOEcos2θ + σROEsin2θ

(17)  

For identical spins I and S, as considered here, the effective R1ρ rate (I′′z +

S′′
z ; relaxation aligned along the z′′-axis) is given by R′′

33 +R′′
36 (= R′′

66 +

R′′
63), while the effective R2ρ rate (I′′x/y + S′′

x/y; relaxation perpendicular to 
the z′′-axis) is equal to R′′

11 + R′′
14 (= R′′

22 + R′′
25 = R′′

44 + R′′
41 = R′′

55 + R′′
52). 

These rate constants are consistent with those reported by Jones and 
Blicharski in the limit that ω0≫ωI,eff , ωS,eff , and ωI,eff τcorr, ωS,eff τcorr≪1 
[11,15], and agree with the well-known expression for the 
auto-relaxation rate of aligned magnetization (I′′z and S′′

z ), R1cos2θ +

R2sin2θ [4,14,34]. 
It is of interest to consider two limiting cases, θ = 0 (Fig. 2A) and 

θ = π/2 (Fig. 2B). In the first case, the B1 field strength is 0 (ω1 = 0), and 
the relaxation matrix reduces to the Solomon equations [21]. In addition 
to longitudinal cross-relaxation between I′′z ↔ S′′

z , transverse cross-
relaxation between I′′x ↔ S′′

x and I′′y ↔ S′′
y is effective, because I and S spins 

oscillate at the same frequency. In practical cases where ω1 ∕= 0 and B1 
inhomogeneity is a limiting factor, any magnetization component 
orthogonal to the effective field axis will dephase and hence does not 
contribute to the resulting signal; the I′′x ↔ S′′

x and I′′y ↔ S′′
y cross-terms 

will, thus, have no effect. When the B1 field strength is infinitely strong 
(ω1 → ∞), θ → π/2, the z′′-axis coincides with the applied B1 field and the 
relaxation rates of the longitudinal (I′′z and S′′

z ) and transverse (I′′x , I′′y ,S′′
x, 

and S′′
y) components of magnetization become R2 and ½(R1 + R2), 

respectively. Thus, in the tilted doubly rotating frame, θ = π/2, the x′′- 

Fig. 2. Relaxation rates of magnetization components parallel to coordinate axes in the rotating frames discussed in the text. (A, B) Superposition of doubly rotating 
(x′′, y′′, z′′, turquoise) and rotating (x, y, z, black) frames where the z-axis points along the static magnetic field. When θ = 0 (ω1 = 0, A), the z′′-axis of the tilted doubly 
rotating frame (turquoise) is coincident with the z-axis, and the effective relaxation rates of the x′′/y′′- and z′′-components are R2 (purple) and R1 (red), respectively. 

The effective field frequency (ωeff) is equal to the offset frequency (ωeff =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ω2 + ω2
1

√

= Ω). In the case where θ = π/2 (ω1 →∞, B), the z′′-axis of the tilted doubly 
rotating frame (turquoise) is parallel to the x-axis. The effective relaxation rates of the x′′/y′′- and z′′-components are (½(R1 + R2); orange) and R2 (purple), 

respectively. The effective field (ωeff) is equal to the B1 field strength (ωeff =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ω2 + ω2
1

√

∼ ω1). (C) Effective auto- (top) and cross- (bottom) relaxation rates of each 
magnetization component, in the rotating (left), titled (middle), and tilted doubly rotating (right) frames, for the intermediate case where tanθ= ω1/Ω, assuming 
like spins. 
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and y′′-axes rapidly rotate about the z′′-axis at a frequency of ωeff and 
have components that oscillate between parallel and perpendicular to 
the static magnetic field (Fig. 2B). In the general case, where the tilt 
angle satisfies the relation tanθ = ω1/Ω, it is straightforward to intuit Eq. 
17. Fig. 2C shows the relaxation rates for components of magnetization 
along the x-, y-, and z-axes of the rotating frame (left), and along the x′-, 
y′- and z′-axes of the tilted frame (center). Subsequent transformation to 
tilted doubly rotating frame, that rotates about the z′′-axes, leads to 
averaging of relaxation rates for the transverse components of magne
tization along the x′- and y′-axes, as illustrated in Fig. 2C (right). 

2.1.5. Relaxation matrix for unlike spins 
Calculation of the Redfield relaxation matrix in the case of unlike 

spins (I and S have distinct chemical shifts, ΩI ∕= ΩS) follows directly 
from Eq. 12. Here we assume that the chemical shift difference between I 
and S spins is sufficiently large such that the oscillation of spin operators, 
A′ ′ q

p, at frequencies proportional to |ωI,eff − ωS,eff|, is rapid compared to 

relaxation rates; ̂̂Γ ′′ elements that contain high frequency oscillations 
(or for that matter any oscillatory terms) can be discarded by the secular 
approximation. When this is not the case then the relaxation matrix itself 
becomes time-dependent; to our knowledge this case is seldom consid
ered and is not further discussed here. As a consequence of the secular 
approximation, there are fewer non-zero relaxation matrix components 
for the case of unlike spins relative to the situation for like spins. The 

Redfield relaxation matrix ̂̂Γ ′′ describing the evolution of σ′′ for unlike 
spins is, 

d
dt

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I′′x
I′′y
I′′z
S′′

x

S′′
y

S′′
z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R′′
11 0 0 0 0 0
0 R′′

22 0 0 0 0
0 0 R′′

33 0 0 R′′
36

0 0 0 R′′
44 0 0

0 0 0 0 R′′
55 0

0 0 R′′
63 0 0 R′′

66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I′′x
I′′y
I′′z
S′′

x

S′′
y

S′′
z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18)  

where 

R′′
11 = R′′

22 = R2cos2θI +
R2 + R1

2
sin2θI

R′′
33 = R1cos2θI + R2sin2θI

R′′
44 = R′′

55 = R2cos2θS +
R2 + R1

2
sin2θS

R′′
66 = R1cos2θS + R2sin2θS

R′′
36 = R′′

63 = σNOEcosθIcosθS + σROEsinθIsinθS

(19)  

Eq. 19 is similar in many respects to Eq. 17, derived for like-spins, but a 
number of clear differences emerge. Note that relaxation matrix com
ponents depend on both θI and θS (θI ∕= θS) for unlike spins and that the 
transverse cross-relaxation pathways between I′′x ↔ S′′

x and I′′y ↔ S′′
y are not 

effective, as spins I and S rotate about their z′′-axes at different fre
quencies so that equal amounts of positive and negative magnetization 
are transferred between the spins [35]. (This is reflected mathematically 
by the fact that the commutator terms giving rise to transverse 
cross-relaxation terms in the like spin case now vanish due to the secular 
approximation). Thus, cross-relaxation occurs only between the aligned 
components, I′′z and S′′

z , with the well-known cross-relaxation rate con
stant, σNOEcosθIcosθS + σROEsinθIsinθS [34]. 

2.2. Relaxation matrix in the tilted frame as predicted from the Solomon 
equations 

The treatment described above, based initially on the work of Jones 
[11], is rigorous in the sense that the resulting relaxation expressions 

hold even in the limit where it is not the case that ω0≫ωI,eff , ωS,eff , and 
ωI,eff τcorr, ωS,eff τcorr≪1, so long as all of the spectral density terms are 
kept (i.e., Eq. 14 is not used). However, as mentioned above, for all 
practical cases of interest in solution NMR (or at least all that we can 
think of), it follows that ω0≫ωI,eff , ωS,eff , and ωI,eff τcorr, ωS,eff τcorr≪1. In 
this limit there is a simpler way of calculating relaxation matrices that 
has been described in the literature [4,22,23]. Herein, we follow the 
approach of Desvaux et al. [4] with a number of modifications, whereby 
the relaxation matrix in the tilted doubly rotating frame is obtained by a 
series of simple manipulations of the Solomon relaxation matrix in the 
rotating frame [21]. 

In this case the master equation in the rotating frame (σ(t) = [Ix, Iy, Iz, 
Sx, Sy, Sz]+) can be described as follows 

dσ(t)
dt

=
(
− î̂L Sol. −

̂̂ΓSol.)σ(t) (20)  

where the Liouvillian (̂̂L Sol. = [Ĥ 0, ], Ĥ 0 = ΩIIz + ΩSSz + ω1(Ix + Sx), 
and [,] denotes a commutator operation) is given by 

̂̂
L Sol. = i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 − ΩI 0 0 0 0
ΩI 0 − ω1 0 0 0
0 ω1 0 0 0 0
0 0 0 0 − ΩS 0
0 0 0 ΩS 0 − ω1
0 0 0 0 ω1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21) 

The relaxation superoperator ( ̂̂Γ Sol.) is, in turn, defined by 

̂̂Γ Sol. =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

RSol.
11 0 0 RSol.

14 0 0
0 RSol.

22 0 0 RSol.
25 0

0 0 RSol.
33 0 0 RSol.

36

RSol.
41 0 0 RSol.

44 0 0
0 RSol.

52 0 0 RSol.
55 0

0 0 RSol.
63 0 0 RSol.

66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22)  

where the matrix components are 

RSol.
11 = RSol.

22 = RSol.
44 = RSol.

55 = R2

RSol.
33 = RSol.

66 = R1

RSol.
14 = RSol.

41 = RSol.
25 = RSol.

52 = σROE

RSol.
36 = RSol.

63 = σNOE

(23)  

and the superscript “Sol.” is added to emphasize that the expression was 

originally derived by Solomon [21]. Although ̂̂ΓSol. is intuitive, and the 
terms easily “guessed”, it can be derived rigorously starting from the 
expression for Ĥ DD(t) (Table S1) and Eqs. 11 and 12, above. Note that 
the longitudinal and transverse relaxation terms naturally emerge in 
such a derivation. Eqs. 20-23 can be similarly applied to both like and 
unlike spins by setting ΩI = ΩS for like spins. For the case of unlike spins 
and when sinθIsinθS ∼ 0 transverse cross-relaxation is not effective 
because Ix/y and Sx/y precess at different frequencies such that net 
magnetization cannot be transferred between the spins [35]. 

In order to compare the relaxation rates obtained in the tilted doubly 
rotating frame where the secular approximation was enforced (Eq. 16- 
19), with the corresponding rates in an equivalent frame starting from 
the Solomon equations (Eq. 20), we first derive the master equation (Eq. 

20) in the tilted frame by introducing a rotation matrix, ̂̂R , that 
transforms σ(t) to σ′(t) = [I′x, I′y, I′z, S′

x, S′
y, S′

z]+. Thus, 

σ′

(t) = ̂̂
R σ(t) (24)  

where the matrix representation of ̂̂R is given by 
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̂̂
R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cosθI 0 − sinθI 0 0 0
0 1 0 0 0 0

sinθI 0 cosθI 0 0 0
0 0 0 cosθS 0 − sinθS
0 0 0 0 1 0
0 0 0 sinθS 0 cosθS

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)  

The inverse rotation ̂̂R − 1 can be obtained by interchanging the signs of 
θI and θS in Eq. 25. By taking the time derivative of both sides of Eq. 24, 
the master equation in the tilted frame can be calculated as follows, 

dσ′

(t)
dt

=
̂̂
R

dσ(t)
dt

=
̂̂
R ( − î̂L Sol. −

̂̂ΓSol.)σ(t)

=
̂̂
R ( − î̂L Sol. −

̂̂ΓSol.)̂̂R − 1 ̂̂R σ(t)

= ( − î̂R ̂̂
L Sol. ̂̂R − 1 −

̂̂
R

̂̂Γ Sol. ̂̂R − 1)σ′

(t)

= ( − î̂L ′Sol. −
̂̂Γ ′Sol.)σ′

(t)

(26)  

The Liouvillian in the tilted frame is, 

̂̂
L

′Sol. =
̂̂
R

̂̂
L Sol. ̂̂R − 1

= i

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 − ωI,eff 0 0 0 0

ωI,eff 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 − ωS,eff 0

0 0 0 ωS,eff 0 0

0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)  

and the relaxation matrix in the tilted frame is given as 

̂̂Γ ′Sol. =
̂̂
R

̂̂Γ Sol. ̂̂R − 1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R′ Sol.
11 0 R′ Sol.

13 R′ Sol.
14 0 R′ Sol.

16

0 R′ Sol.
22 0 0 R′ Sol.

25 0

R′ Sol.
31 0 R′ Sol.

33 R′ Sol.
34 0 R′ Sol.

36

R′ Sol.
41 0 R′ Sol.

43 R′ Sol.
44 0 R′ Sol.

46

0 R′ Sol.
52 0 0 R′ Sol.

55 0

R′ Sol.
61 0 R′ Sol.

63 R′ Sol.
64 0 R′ Sol.

66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(28) 

In Eq. 28 the non-zero matrix components for auto-relaxation are 

R
′ Sol.
11 = R2cos2θI + R1sin2θI

R′ Sol.
22 = R2

R′ Sol.
33 = R1cos2θI + R2sin2θI

R′ Sol.
44 = R2cos2θS + R1sin2θS

R′ Sol.
55 = R2

R′ Sol.
66 = R1cos2θS + R2sin2θS

(29)  

and those for cross-relaxation are given by 

R′ Sol.
13 = R′ Sol.

31 = (R2 − R1)sinθIcosθI

R′ Sol.
14 = R′ Sol.

41 = σROEcosθIcosθS + σNOEsinθIsinθS

R′ Sol.
16 = R′ Sol.

61 = σROEcosθIsinθS − σNOEsinθIcosθS

R′ Sol.
25 = R′ Sol.

52 = σROE

R
′ Sol.
34 = R

′ Sol.
43 = σROEsinθIcosθS − σNOEcosθIsinθS

R′ Sol.
36 = R′ Sol.

63 = σROEsinθIsinθS + σNOEcosθIcosθS

R′ Sol.
46 = R′ Sol.

64 = (R2 − R1)sinθScosθS

(30) 

Eqs. 27-30 are identical to the results of Desvaux et al. (Eq. 19 in 
Ref. [4]) and hold for both unlike (ΩI ∕= ΩS) and like (ΩI = ΩS) spins. 

It is straightforward to show that the time evolution of the density 
matrices in the tilted frame, derived from the Solomon equations (Eqs. 
26-30), and in the tilted doubly rotating frame (Eqs. 16-19) are identical. 
This can be seen in a qualitative way by noting that the effect of the 
Liouvillian in Eqs. 26-27 is to rapidly interconvert the x′ and y′ com
ponents of magnetization (i.e., I′x, I′y or S′

x, S′
y rapidly rotate about the 

z′-axis in their respective tilted frames at frequencies of ωI,eff or ωS,eff, 
respectively). This leads to an averaging of auto-relaxation rates of spins 
I and S, for example, 

R′ Sol.
I,ave =

1
2
(
R′ Sol.

11 + R′ Sol.
22

)

= R2cos2θI +
R2 + R1

2
sin2θI

R′ Sol.
S,ave =

1
2
(
R′ Sol.

44 + R′ Sol.
55

)

= R2cos2θS +
R2 + R1

2
sin2θS

(31)  

so that they become equivalent to those in Eqs. 17 and 19. For both like 
and unlike spins cross-relaxation between x′ and z′ components of 
magnetization (I′x↔I′z, I′x↔S′

z, S′
x↔S′

z, and S′
x↔I′z) can be neglected 

because I′x (S′
x) rapidly oscillates about the z′ axis so that no net transfer 

of magnetization to I′z (S′
z) can occur. Thus, R′ Sol.

13 ,R′ Sol.
16 ,R′ Sol.

31 ,R′ Sol.
34 ,R′ Sol.

43 ,

R′ Sol.
46 ,R′ Sol.

61 , and R′ Sol.
64 (Eq. 30) can be set to zero. In a similar manner, in 

the case of unlike spin pairs (ωI,eff ∕= ωS,eff), transverse cross-relaxation 
between I′x↔S′

x, and I′y↔S′
y also averages to zero because there is no 

phase coherence between transverse x′ and y′ components of I and S 

magnetization. Therefore, R′ Sol.
14 ,R′ Sol.

41 ,R′ Sol.
25 , and R′ Sol.

52 can be further 
discarded in this case. With these “modifications” to the relaxation 
matrix of Eq. 28, it becomes completely equivalent to the corresponding 
matrices in Eqs. 17 and 19 for like and unlike spins, respectively. As 
mentioned above, in practical applications the components perpendic
ular to the aligned magnetization dephase due to the inhomogeneity of 
the applied B1 field without contributing to the observed signal; 
nevertheless, it is of interest to note that magnetization exchange 
involving these components can be averaged to zero even in the limit of 
a perfectly homogenous B1 field. 

An alternative and slightly more mathematical way of showing the 
equivalence illustrated above is to express Eq 26 in the tilted doubly 

rotating frame. Here we define the superoperator ̂̂R ′

(t) that transforms 
σ′

(t) to σ′′(t) = [I′′x , I′′y , I′′z , S′′
x, S′′

y , S′′
z ]

+, 

σ′′(t) = ̂̂
R

′

(t)σ′

(t) (32)  

and transformation of each product operator, B′

i, by ̂̂R ′

(t) can be defined 
by 

̂̂
R

′

(t)B
′

i = exp
(
iĤ eff t

)
B′

i exp
(
− iĤ eff t

)

Ĥ eff = ωI,eff I
′

z + ωS,eff S
′

z

(33)  
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where Ĥ eff is the Hamiltonian of the effective field (see Eq. 5). The 

explicit matrix representation of ̂̂R ′

(t) is given by 

̂̂
R

′

(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cosωI,eff t sinωI,eff t 0 0 0 0
− sinωI,eff t cosωI,eff t 0 0 0 0

0 0 1 0 0 0
0 0 0 cosωS,eff t sinωS,eff t 0
0 0 0 − sinωS,eff t cosωS,eff t 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34)  

where each matrix component can be obtained from 

̂̂
R

′

(t)rs =

〈
B′

r|exp
(
iĤ eff t

)
B′

sexp
(
− iĤ eff t

)〉

〈
B′

r |B
′

r

〉 (35)  

By taking the time-derivative of both sides of Eq. 32, we arrive at a 
master equation in which the Liouvillian part is eliminated, by effec
tively incorporating it into the relaxation matrix: 

dσ′′(t)
dt

=
d
dt
{
̂̂
R

′

(t)σ′

(t)}

=
d
dt
̂̂
R

′

(t)σ′

(t)+ ̂̂
R

′

(t)
dσ′

(t)
dt

=
d
dt
̂̂
R

′

(t)̂̂R
′

(t)− 1σ′′(t)+ ̂̂
R

′

(t)
(
− î̂L ′Sol. −

̂̂Γ ′Sol.)σ′

(t)

=
d
dt
̂̂
R

′

(t)̂̂R
′

(t)− 1σ′′(t)+ ̂̂
R

′

(t)
(
− î̂L ′Sol. −

̂̂Γ ′Sol.)̂̂R
′

(t)− 1 ̂̂
R

′

(t)σ′

(t)

=

(
d
dt
̂̂
R

′

(t)̂̂R
′

(t)− 1
− î̂R ′

(t)̂̂L
′Sol. ̂̂R

′

(t)− 1
−
̂̂
R

′

(t) ̂̂Γ ′Sol. ̂̂R
′

(t)− 1
)

σ′′(t)

=−
̂̂
R

′

(t) ̂̂Γ ′Sol. ̂̂R
′

(t)− 1σ′′(t)

=−
̂̂Γ ′′Sol.σ′′(t)

(36)  

In the derivation of Eq. 36, we have used the relation, d
dt
̂̂
R

′

(t)̂̂R ′

(t)− 1 
−

î̂R ′

(t)̂̂L ′Sol. ̂̂R
′

(t)− 1
= 0 which follows from Eqs. 27 and 34. Thus, the 

Solomon relaxation matrix in the tilted doubly rotating frame is given by 
̂̂Γ ′′Sol. (= ̂̂

R
′

(t) ̂̂Γ ′Sol. ̂̂R
′

(t)− 1). Table S3 lists the 36 elements of ̂̂Γ ′′Sol.

obtained in this way. Assuming that ωI,eff ,ωS,eff ≫
̂̂Γ ′′Sol.

rs (equivalent to the 
secular approximation invoked in Eq. 12) it follows that the only terms 
contributing to the evolution of σ′′(t) are those that are time- 
independent. The expressions in Table S3 then reduce to those for like 
(Eqs. 16 and 17) and unlike (Eqs. 18 and 19) spins given above. 

3. Concluding remarks 

We have presented a tutorial describing the calculation of dipolar 
relaxation for a two spin I-S homonuclear spin-system in the presence of 
a B1 field. Two different approaches have been taken, including one 
where a series of transformations was accomplished, ultimately trans
ferring the B1 field and chemical shift contributions to the dipolar 
Hamiltonian [11], with the relaxation matrix in this interaction repre
sentation of the effective field calculated by enforcing the secular 
approximation. Alternatively the relaxation evolution of the I-S spin 
system can be described simply from the Solomon Equations [21], as 
discussed previously [4]. As the equations involved appear, at first 
glance, to be different, a thoughtful analysis of both approaches is a 
useful pedagogical exercise in understanding elements of relaxation 
theory. In the limit where ω0≫ωI,eff , ωS,eff , and ωI,eff τcorr, ωS,eff τcorr≪1, 
which is fulfilled in essentially all applications in solution NMR, iden
tical results are obtained, as demonstrated here. Where the limit above is 
not fulfilled, calculation of the relaxation elements in the interaction 
representation of the effective field [11] ensures that the correct 

frequency components of the spectral densities are obtained. 
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