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NMR studies exploit spin relaxation in a multitude of different ways, providing information on molecular
structure and dynamics. Calculating the relaxation rates of NMR active nuclei in multi-spin systems is often a
prerequisite for the proper analysis of experimental data. For many researchers the calculations appear complex,
often involving different basis sets or expressions describing relaxation in different frames. In this tutorial paper
we derive expressions for dipolar relaxation of an I-S two spin spin-system in the presence of a B radio frequency
field, where spins I and S can be either like or unlike. We consider two different approaches for the derivation of

relaxation elements that have been used in the literature, including one where a series of transformations are
carried out to the interaction representation of the effective field, comprising B; and Zeeman components. A
second procedure is based on the well-known Solomon equations. We show that both approaches lead to
identical results, in the process presenting a pedagogical description of relaxation theory.

1. Introduction

Solution nuclear magnetic resonance spectroscopy is a powerful
technique for characterizing molecular structure and dynamics,
exploiting, in many cases, various nuances of spin relaxation. Included
in the portfolio of relaxation studies are those that involve application of
a B field, often providing unique information. For example, rotating
frame Overhauser enhancement spectroscopy (ROESY) [1,2], initially
called cross-relaxation appropriate for minimolecules emulated by
locked spins (CAMELSPIN) [1], takes advantage of the fact that in the
presence of a B field cross-relaxation in the transverse plane occurs
between spins, establishing through-space internuclear connectivity in
medium-sized molecules where it can be the case that longitudinal
cross-relaxation, which forms the basis of nuclear Overhauser effect
spectroscopy (NOESY), is not observed. ROESY experiments can be
conducted with the B; field applied in an off-resonance manner
(off-resonance ROESY) so as to suppress Hartmann-Hahn magnetization
transfer or to selectively observe the correlated motion of two nuclei by
carefully choosing the offset and the B; field strength [3-5]. Further,
application of a variable strength B; field can be used to modulate
dephasing of coherences from chemical exchange, providing valuable
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information about the conformational dynamics of molecules occurring
on a micro- to milli-second time-scale. This class of experiments has
been extensively utilized to quantitatively characterize functionally-
related motions of proteins and nucleic acids [6-9].

To date, a number of publications have presented the theory for spin
relaxation in the presence of a B; field. Beginning from the quantum
mechanical and semi-classical treatment of spin relaxation [10], Jones
derived the well-known spin-lattice relaxation time of magnetization
aligned along an effective field (T1,), focusing on two dipolar-coupled
identical spins [11]. The calculation was performed via a number of
coordinate transformations so that the effects of evolution due to
chemical shift and the B; field were both ultimately included in the
dipolar Hamiltonian that was described in a tilted doubly rotating
frame, the so called interaction representation of the effective field. The
resulting relaxation equations were then simplified according to the
“secular approximation”, neglecting rapidly evolving time-dependent
terms, as described in detail in Redfield’s treatment of relaxation [12,
13]. Kuwata and Schleich have considered the case of a pair of unlike,
dipolar coupled spins [14], using a formalism similar to that of Jones. In
this case where the two interacting spins have different chemical shifts
and when the applied B field is not sufficiently strong so as to render the
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effective shift differences negligible, a larger number of components of
the Redfield relaxation matrix oscillate rapidly, at rates much larger
than the relaxation of the individual coherences, relative to the case for
like spins. Such terms do not contribute to the evolution of magnetiza-
tion. In this sense, the application of a B; field can alter the structure of
the relaxation matrix, in a manner that depends on the chemical shift
differences between interacting spins and on the B; field strength. The
approach of Jones was subsequently further extended to the calculation
of Ty, and the relaxation time of magnetization perpendicular to the
effective field (To,), considering a number of different relaxation
mechanisms [15], and anisotropic motions [16]. Calculations involving
J-coupled multi-spin systems [17,18] and of heteronuclear two-spin
systems have also being carried out [19,20].

An alternative, equally valid way of calculating spin relaxation in the
presence of a B; field is one where evolution of the spin system due to
relaxation, described by the Solomon equations [21], is separated from
evolution due to Zeeman and B; fields [12,22-24], in contrast to the
method of Jones [11]. This approach holds true for any B; field that
might reasonably be considered in solution NMR [24], with the final
result valid for both like and unlike spins. This, alternative, and less
mathematically demanding formalism is commonly used to describe
rotating-frame relaxation (Ry,) experiments for identifying and charac-
terizing chemical exchange processes occurring on a microsecond to
millisecond timescale [6,25,26]

As the spin gymnastics involved in the two approaches are somewhat
different, we were interested in examining each in some detail, using a
common formalism, with a pedagogical description of the results. We
emphasize that the theoretical framework described here is not novel,
and our intent is not to present original research. Rather, the goal of this
tutorial paper is to provide an example of how seemingly different spin
relaxation formalisms can lead to identical final answers, in the process
showing how the secular approximation plays differently into both
methods, by considering the example of relaxing spin-pairs in the
presence of a weak Bj field.

2. Results and discussion

In what follows we consider the auto- and cross-relaxation of two
dipolar-coupled homonuclear spin ¥ particles, denoted as I and S, in the
presence of a B; field, with an arbitrary chemical shift difference.
This spin-system is well-suited to describe 'H-'H spin relaxation in
on-/off-resonance ROESY experiments, for example. For simplicity, we
neglect coupling of the spins to a lattice (i.e., the return of magnetization
back to its equilibrium position), although this could be easily added in
an ad hoc manner [12,22-24,27]. In many applications phase cycling of
pulses ensures that, in fact, rather than evolving to equilibrium,
magnetization relaxes towards zero when the average over the complete

A Laboratory frame —> Rotating frame
(ot e, 24 (x,,2) (x,,2)
~lab z z'
0
x/g X

X Y

0)0 yluh _)‘ ~ ,
®

B Rotating frame — Tilted frame

Z

Journal of Magnetic Resonance Open 12-13 (2022) 100065
phase cycle is considered [28].
2.1. Calculation of relaxation elements via the method of Jones

2.1.1. Coordinate transformations

We first consider a series of coordinate transformations that ulti-
mately place all the chemical shift and B; field dependencies in a revised
dipolar Hamiltonian [11] which is then used to calculate relaxation
rates, with retention of only those terms that are secular. We begin by
briefly reviewing the frames that will be used, as summarized in Fig. 1.
These include (i) the laboratory frame (ab, y]ab, 212%) where the z-axis is
pointed along the static By field, (ii) the rotating frame (x, y, 2) that
rotates about the static magnetic field at the Larmor frequency (@) of
the two dipolar coupled homonuclear spins (not including their chem-
ical shift offsets), (iii) the tilted frame (x’, ¥/, ), generated by tilting the
rotating frame about the y-axis through an angle 6 so that the z'-axis is
along the effective field given by the vector sum of the (residual) Zeeman
and B fields in the rotating frame, the latter applied along the x-axis,
and, finally, (iv) a tilted doubly rotating frame (x”, y”, "), corresponding
to the interaction representation of the effective field. Note that when
the offset frequencies of the two spins are different, the tilt-angle and
tilted doubly rotating frame for each spin are distinct, so that separate
transformations must be performed for each spin (tilting of 2’ followed
by rotation about 2”), as illustrated below. We derive expressions for the
relaxation matrix components in a basis of cartesian spin operators (I,
Iy, I, S, Sy, and S;), in the final (x”, y”, 2") frame, that is subsequently
compared with an approach based on the Solomon equations [21],
described in a following section.

Consider a B, field of magnitude 2w, oscillating at wo along the x-axis

in the laboratory frame. The Hamiltonian, 7% in this frame (rad/s) is
defined as follows,

T = ol + w58 + 2w cos(wot) (1" + S“) + T (1) (@)

where w; and ws are the precession frequencies of spins I and S, and

7 lab (¢) is the time-dependent dipolar Hamiltonian in the laboratory
frame [12,29]. Note that each operator term in the laboratory frame is
indicated with a superscript “lab”. The transformation of the dipolar
Hamiltonian will be described in the following section (The dipolar
Hamiltonian in the tilted doubly rotating frame).

The first coordinate transformation involves the rotation of the sys-
tem at a frequency of wo about the z-axis (Fig. 1A). The operative

Hamiltonian in this first rotating frame (7)is given by

C Tilted frame —> Tilted doubly rotating frame
&y, 2"

', z"

x", y", z")

Fig. 1. Coordinate transformations used in this work. (A) Transformation from the laboratory frame (xl”b, yl"b, zl"b) (blue) to the frame (x, y, 2) rotating about the 2-
axis at a frequency of wg (black). (B) Transformation from the rotating frame (x, y, 2) (black) to the tilted frame (x’, y’, ') where the z-axis is rotated about the y-axis
by an angle 6 (tanf= w1/Q, where ©, is the B; field strength and Q is the offset frequency, rad/s; the B field is applied along the x-axis) (red). (C) Transformation

from the tilted frame (x, y’, ') (red) to the tilted doubly rotating frame (x”, y”, "), which rotates about the z'-axis at a frequency of (we = 4/ m% +Q3?) (turquoise).
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/;{7 - U« ﬁluhUlab—l _ jylab % Ul

Q

(0 — wo)I; + (ws — 00)S; + w1 (I + Sx) + Z pp(t) 2
= QI +QsS, + o (I, +S:) + «%?DD(f)

U = exp(iwolédbt)exp(iwoS’z“"t)

where U'? is the unitary operator that transforms the laboratory frame
into the rotating frame, Q; (= w; — wo) is the offset frequency of spin i
from the carrier placed at the Larmor frequency (wo) and 7 op(t) (=
Uleb 77lab (1) U'@b-1) s the dipolar Hamiltonian in the rotating frame. The
second term in the first line of Eq. 2 derives from the time-dependence of
the unitary operator U® [29]. As is routinely done, the B; field term
oscillating at 2wq in the rotating frame, giving rise to the so called
Bloch-Siegert shift [30], has been ignored.

In a second transformation the rotating frame is tilted by ¢; about the
y-axis, where tanf; = w1/Q;, so that the resulting 2'-axis (axes in the tilted
frame are denoted with a prime) is parallel to the effective field
(Fig. 1B). When the two spins have different chemical shift offsets this
transformation is performed as two successive rotations with distinct
angles, 0y and 0, about the y-axis (one for each spin), as shown below in
the derivation of the effective Hamiltonian in the tilted frame (/7; 8]

7 =uru!
= (;5ind; + Qcos, )L, + (,5inds + Qgcosds)S. + /77DD(t) @)
= w1l + w5 S+ 7 (1)

U = exp(i6;1,)exp(i6sS,)

where U is the unitary operator that transforms the rotating frame into
the tilted frame, ;o (= 1/@? + Q?) is the effective frequency of spin i,

and 7 (t)(= U7, (t)U) is the dipolar Hamiltonian in the tilted
frame. Spin angular momentum operators in the rotating (first) frame
and those in the tilted (second) frame are related according to

I, = I;cosﬁl + I;sinH,
I, = i

I, = I;COSQI — I;sinﬁl
S, = S,c086s + S.sinds
Sy, =8

S, = s costs — S;sin&g

z

4

Finally, one last coordinate transformation is performed to eliminate the
time-independent parts of the Hamiltonian (i.e., terms proportional to I,
and S,). This can be accomplished with two successive transformations
about the z'-axes with frequencies of wjr and wse, similar to the
transformations from the laboratory to the rotating frames (Eq. 2)
(Fig. 1C). The operative Hamiltonian in the tilted doubly rotating frame

7" is given by
7" =UZ'U —Usu!
dt

= ‘/7;11/)1) () )

U = exp(ioy g L.t)exp(ios 4 S.1)

where U is the operative unitary transformation. All of the time-
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independent terms (Eq. 3) have now been incorporated into the
dipolar Hamiltonian in the tilted doubly rotating frame (?’gD(t) =

U 7 pp(t0U). It is thus straightforward to calculate the Redfield
relaxation matrix in this final frame and then to intuit what the indi-
vidual relaxation terms mean in terms of the evolution of magnetization
(see below).

2.1.2. The dipolar Hamiltonian in the tilted doubly rotating frame
Before proceeding further the dipolar Hamiltonian in the tilted

—

doubly rotating frame (7} (t)) must be calculated, as described pre-
viously [11]. Table S1 lists all of the terms for the dipolar Hamiltonian in

the rotating frame, 7 pp(t); the subsequent transformations expand the
number of terms considerably and place all of the time-dependence of

—

the spin system explicitly in .7}, (t), as shown in detail below, where we
illustrate how these transformations are accomplished. We begin by
representing the dipolar Hamiltonian in the laboratory frame using the
spin tensor operators A] and the spatial variables F(, ¢) of rank q and
order p as follows,

@) =dy Y S ALFI(B, )

9==2 p

W =il

©
rh

3
Tls

where f and ¢ are time-dependent angles defining the orientation of the
vector connecting spins I and S in the lab frame, rig is the distance be-
tween the two spins, y is the gyromagnetic ratio (here assuming
y=y1=1ys), f is Planck’s constant divided by 2r, and g is the perme-
ability of free space [12,29]. Thus, Eq. [6] makes it clear that changes in
the orientation of the dipole vector with respect to the magnetic field
from molecular tumbling or internal dynamics, or fluctuations of the
inter-nuclear distance, rg, give rise to time dependent dipolar fields that

produce the relaxation of interest (i.e., modulation of ?/’%’}’,(t)). In what
follows we consider only isotropic overall motion as the source of the
fluctuations. As mentioned above, Table S1 lists the A} and FI(8,¢)
values that are germane in this case.

7 lab (¢) is initially transformed to the rotating frame using the uni-
tary rotations defined in Eq. 2

}\/nn(f) _ gl }\/ZIZ([)UW—I

S S

q==2 p

)

which follows directly from the fact that [7 ¢ A} = wlA}, where To(=
wo(Il; + Sz)) is the Hamiltonian used for the transformation into the
rotating frame, Eq. 2 [29]. Thus, it follows that the operators Ag are

eigenstates of the Liouvillian o (= [;77 0, J; in what follows we denote
superoperators, such as the Liouvillian, with double hats), with eigen-
values (eigenfrequencies) wg.

The second and the third transformations can be similarly performed
using the unitary rotations defined in Eqgs. 3 and 5, respectively,
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T (1) =UUZ pp(t)UU!

+2 . ., (8)

=d, Z ZA ZF"(ﬂ7 (p)exp<i0) Zt)
q=-2 p

whereby 7 pp(t) is successively transformed into the tilted and then
tilted doubly rotating frames. The transformation into the tilted frame
(U) “spreads out” each spin tensor operator (A7) into multiple terms (for
example, starting from Ag « IS, (q=0, p=0; Table S1) it can be shown
that IS, > I',S',, I''S'y, I™S', I,S'™", I',S'~, I'"'S'Y, I''S'~, I'"S'", and
I'"S'~ with coefficients that depend on 6; Table S2), leading to many
more coherence orders p for each g. In addition, the final transformation

(U") leads to a net modulation of exp(ia)”gt) and as a consequence, the

frequencies for each term comprising .7}, (t) are now dependent on the
effective fields of I and S (wyefr and ws ¢f) that are, in turn, a function of
the B field strength (w;) and offset frequencies (©; and Qg) (Table S2).
As discussed below, these frequency terms determine which of the many

possible combinations of spin operators in 7 #p(t) give rise to non-zero
contributions to relaxation; many of these combinations are irrelevant
since they lead to oscillations that average to zero much more rapidly
than the decay of the density elements from relaxation.

In summary, Eq. 9 below illustrates how the Liouville-von Neuman
equation for the density operator “evolves” with the different coordinate
transformations described above, showing that the time-independent
part of the Hamiltonian is progressively simplified in the process. This
“evolution” has important implications for evaluating the relaxation
elements, as discussed below, since the frequencies of evolution of the
spin operator components of the relaxation Hamiltonian can change
between frames (compare of and " values for Aj, Table S1, and A",
Table S2).

Evolution of density matrix

Hamiltonian
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2.1.3. Calculation of relaxation

Having derived the operative Hamiltonian in the tilted doubly
rotating frame it is now possible to calculate the Redfield relaxation
matrix components using Eqs. 8 and 10

do” (1)
dt

— [ 0. [ it 0.0 0] s
0 (10)

_ 7?”6”(1‘)

where T denotes the relaxation superoperator (double prime indicates

that the relaxation expressions correspond to those for the tilted doubly

rotating frame) and the top bar inside the integral represents an

ensemble average [12,13]. Expanding the density matrix in terms of

product operators, ¢”(t) = > b/ (t)B} [31], where the time dependence
s

associated with the evolution of each of the operators B in the tilted
doubly rotating frame is subsumed in b;(t), Eq. 10 reduces to

db”(t) <B;/‘ /0 [’/7\2/)[)([)7 [};ILI)D(I - T)vB./\/H >d‘[
i~ _Z (B!|B)) P an
=Y s

with the time-dependence introduced by the coordinate frame trans-
formation of Eq. 8 contained within 7’ bp(t). Replacing ?gD(t) by the
relation in Eq. 8, yields

do' (1 e _ —lab
Laboratory frame Udt( ) —i[ 7", 6" (1)] A = oI + 058 + 2w cos(wot) (17 + S°) + 7 1, (1)
(xlahAylah Zlah)
) )
. do(t) . — = -
Rotating frame P —i[ 7 ,0(1)) A = QI + QsS. + w (I, + S,) + Z pp(t)
(x,¥,2) (Q = w1 — wy, Qs = w5 — @)
1 1 (C)]
§ do‘l(t) S = , R
Tilted frame e —i[7" 0 (1)) A = Oyl + 0.5 S, + T pp (1)
(*,y,7) <w'~6ff‘ =\ + 9, w5 = /o) + Qg)
) )
: o () _ o S _
Tilted doubly rotating frame e —i[7", 6" ()] A" = (1)

(x// , y// , Z//)
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=)

(B/|B))

q.q pr'

L =Y en(i(o' + o)) (s, )] | F@w @i jexp(~ioge)ar

° ZZexp( (a)"" + w”Z,)t) <B”‘ [A”ZH [A//Z7B,/” > /oo FY (Q(1))F1(Q(t — T))exp(fiwgr)dr

(B|B)) o

a.q pr'

Y (i e} o
Zz(sw e AT / F9(Q(0)F(Q(r —
q pp' ri=r —®

12)

T))eXp(—inT)dT

(B/1B))

q9 ppr

where Byt _oa IS the Kronecker delta, and the time-dependence of the
"

orientation of the I-S inter-nuclear vector in the rotating frame is given
by Q(t) = {p(t),e(t)}. A factor of 1/2 is introduced in the second line to
account for the extension of the integral to cover the range -co to oo in
the spectral density function presented below. Importantly, Eq. 12 in-
and A p/q, 0} Z
+ a)”;q, determines whether a particular double commutator term

dicates that the sum of eigenfrequencies of operators A’ 'g

contributes to relaxation or not via what is referred to as the secular

—-q

approximation. When (u”g + a)”pr is much larger than the relaxation

rates of the operative density elements (typically on the order of 0.1-102
s1), there is no contribution to relaxation because the term in question
is rapidly averaged between —1 and 1 over the much slower timescale of
relaxation (the term is called non-secular). Thus, in the calculation,

'q

. / 11—q
commutator terms are only considered when v ), = —w

- in lines 3 and 4 of Eq. 12. It is
14

(the terms

—w

are called secular), enforced by 6,4
2

noteworthy that rotations to different coordinate frames, Eq. 9, effec-
tively transfer the chemical shift and B; field terms to the dipolar
Hamiltonian such that what is secular in one frame can become non-
secular in another frame. By means of a trivial example, consider the

expression for }Z)D(t) (the dipolar Hamiltonian in the tilted frame), that

is given in Table S2 with the modification that w”g = qwy (last column),

and all double primes become single primes. Thus, w'g =—0 ;q for each
of the nine terms associated with a given value of q and —q. In contrast,
in the tilted doubly rotating frame a much smaller number of terms

q

satisfy the relation o', = —o"

illustrate below, the net evolution of the density matrix is the same in
both frames, considering all terms (both dipolar and non-dipolar) that
contribute to the Hamiltonian of the system.

Assuming random Brownian isotropic motion characterized by a
rotational correlation time 7., J(®) depends on the spatial component

;q (i.e., are secular). Of course, as we

of 71,(t) as follows

J(w) = Re{ /oo FT(Q(1)F1(Q(t — 1))exp(—iw1)d1}

13)

Teorr

1+ o’

Teorr

2
5
where “Re” indicates the real component of the integral [12,29]. As
listed in Table S2, each term of 7 bp(t) is associated with a unique
frequency, ' p» and accordingly, many different J(" ) terms poten-

tially need to be considered when calculating relaxatlon rates [11,15].
However, for typical w, &, and Qg values considered in solution NMR,
it follows that wo>>w; e, Ws ¢f, and that Wy e Teorr, Ws eff Teorr<<1, and, thus,
only three spectral density terms need be considered,

02250,,,4 s Bl”/l{AN”'q’ [A"g ’Bgm(—l)q / ) Fq*(gz(z))Fq(g(z—f))exp(—iwgf>dr

J(0) =J(xwrey) = (£0s.5) = (£ |01 T O5.5)
J(@o) =J (w0t 0y) =T (00t wser) =T (w0 |05 T 025,
J(Za)o) = 1(2600 + w,‘eﬂ-) = J(Za)o + a)g‘eﬂ) = 1(2600 +

)

W off T W o |)
14)

Although we have indicated the simplest form of J(®) in Eq. 13, other
spectral density functions that include additional motional parameters,
discussed in the context of the model-free formalism [32,33], for
example, may be more appropriate.

2.1.4. Relaxation matrix for like spins

Using Egs. 12-14, we are now ready to calculate Redfield relaxation
matrices. Here we describe the evolution of the I-S spin system using the
density matrix expanded in a Cartesian product basis, ¢"(t) =
[, I” N S SJ’; .S, *, where + denotes transpose, and the double prime
1nd1cates that the coordinate system is the tilted doubly rotating frame.
In this section it is assumed that spins I and S are “like” [12], so that
either their chemical shift difference is sufficiently small and/or the
applied B; field is sufficiently strong, such that their effective fre-
quencies are the same (o ¢ff = s ¢f)- Thus, a single tilt angle (6 = 6y = 6s)
and offset frequency (Q = Q= Q) is sufficient to describe the system.

In what follows we will express the calculated relaxation rates in
terms of those derived in the laboratory frame [4,29],

R, = i(4,,) yrg (J(0) + 3J(wo) + 6J(2ay))

r=gie) 7%
()7

r,
o =3
N()E—4 r,S

where R; and Rj are the longitudinal and transverse relaxation rates of
dipolar-coupled spins I and S, and orog and oyof are the transverse and
longitudinal cross-relaxation rates, respectively. As presented below,
each component of the relaxation matrix in the tilted doubly rotating
frame can be rewritten in terms of a relatively simple combination of the
terms in Eq. 15, providing a more intuitive picture of relaxation. After
tedious but straightforward calculations, the Redfield relaxation matrix

J(0) 4+ 9J(wo) + 6J(2wp))
(15)
J(0) + 3J(a))

Iy

OROE =

— J(0) + 6J(2a0))

[ describing the evolution of ¢’ (t) = [I/, I, I, S!,8, 81" is given by,

x>yt Y1z
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© ¢
C Rotating frame Tilted frame Tilted doubly rotating frame
(x, 3, 2) x% ',z (x", ", z")
z
Auto-
relaxation R,
X
. z
F 3
Cross- Onor 0ysC08°0 + o Sin*0 [ cos0 + [ sin?0
relaxation O o O ror , )
. ! Nx
Y x’ G o cos’0 +a,,, sin’0

Fig. 2. Relaxation rates of magnetization components parallel to coordinate axes in the rotating frames discussed in the text. (A, B) Superposition of doubly rotating
", y", 2", turquoise) and rotating (x, y, 2, black) frames where the z-axis points along the static magnetic field. When 6 = 0 (w; =0, A), the 2”-axis of the tilted doubly
rotating frame (turquoise) is coincident with the z-axis, and the effective relaxation rates of the x”/y”- and 2”-components are R, (purple) and R; (red), respectively.
The effective field frequency (w5 is equal to the offset frequency (wy = \/Q? + @} = Q). In the case where 0 =1/2 (@; —oo, B), the 2z"-axis of the tilted doubly
rotating frame (turquoise) is parallel to the x-axis. The effective relaxation rates of the x”/y”- and z”-components are (%2(R; + R»); orange) and R» (purple),
respectively. The effective field (w.5) is equal to the B; field strength (wey = 4/ Q2+ »? ~ wy). (C) Effective auto- (top) and cross- (bottom) relaxation rates of each

magnetization component, in the rotating (left), titled (middle), and tilted doubly rotating (right) frames, for the intermediate case where tanf= ©,/€, assuming
like spins.

o' (1) _ 12”6”(1) Rjs), while the effective Ry, rate (I, + S}, ; relaxation perpendicular to
dt the z”-axis) is equal to R{; + R}, (=R}, + Rjs =R}, + R} =Ris+ Ri,).
[ r i [ R, 0 0 R, 0 0 1T I ] These rat.e.constarllts.are consistent with those reported by Jones and
I o R 0 o0 R. o I Blicharski in the limit that wo>wy ey, s ey, and O efTeorr, s effTeor<<1
y 2 25 y 16 [11,15], and agree with the well-known expression for the
AR 0 0 Rj; O 0 Ry| |1 16) auto-relaxation rate of aligned magnetization (I/ and S}), Ricos?0 +
d | s B R, O 0 R, 0 0 s Rysin?0 [4,14,34].

% o R. 0 0 R. 0 g It is of interest to consider two limiting cases, § =0 (Fig. 2A) and
Y 52 3 Y 0 =mn/2 (Fig. 2B). In the first case, the B field strength is 0 (w; = 0), and
7 0 0 R, O 0 R, ||S the relaxation matrix reduces to the Solomon equations [21]. In addition
o ) 7 to longitudinal cross-relaxation between I} < S], transverse cross--
with relaxation between I < Sy and I < Sy is effective, because I and S spins
R, LR oscillate at the same frequency. In practical cases where @w; # 0 and B;
R, =Rj, =R}, = R = Rycos’0 + ———sin’0 inhomogeneity is a limiting factor, any magnetization component
orthogonal to the effective field axis will dephase and hence does not

R!, = R/, = R,cos*6 + R,sin’0 . . .
3 7 Teo ! 2 a7) contribute to the resulting signal; the I} < Sy and I} < S cross-terms
R!, =R}, = Rl; = R, = 0xorcos’0 + OroE + ONOE 29 will, thus, have no effect. When the B; field strength is infinitely strong
2 (w1 = o), § > 1/2, the 2”-axis coincides with the applied B; field and the
Ris = Rg; = 0noucos’0 + opopsin’0 relaxation rates of the longitudinal (I; and S;) and transverse (I}, I, Sy,

. . . . . and SJ) components of magnetization become Ry and ':(Ri + Ra),
For identical spins I and S, as considered here, the effective Ry, rate (I} +

respectively. Thus, in the tilted doubly rotating frame, 6 = /2, the x”-
S7; relaxation aligned along the z"-axis) is given by R}; +R%; (= R{s + pectively y 8 "
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and y”-axes rapidly rotate about the z"-axis at a frequency of wes and
have components that oscillate between parallel and perpendicular to
the static magnetic field (Fig. 2B). In the general case, where the tilt
angle satisfies the relation tanf = w1/, it is straightforward to intuit Eq.
17. Fig. 2C shows the relaxation rates for components of magnetization
along the x-, y-, and z-axes of the rotating frame (left), and along the x'-,
y'- and z'-axes of the tilted frame (center). Subsequent transformation to
tilted doubly rotating frame, that rotates about the z’-axes, leads to
averaging of relaxation rates for the transverse components of magne-
tization along the x’- and y’-axes, as illustrated in Fig. 2C (right).

2.1.5. Relaxation matrix for unlike spins

Calculation of the Redfield relaxation matrix in the case of unlike
spins (I and S have distinct chemical shifts, Q; # Qg) follows directly
from Eq. 12. Here we assume that the chemical shift difference between I
and S spins is sufficiently large such that the oscillation of spin operators,

A”g, at frequencies proportional to |wg e — ws,efl, is rapid compared to

relaxation rates; ['” elements that contain high frequency oscillations
(or for that matter any oscillatory terms) can be discarded by the secular
approximation. When this is not the case then the relaxation matrix itself
becomes time-dependent; to our knowledge this case is seldom consid-
ered and is not further discussed here. As a consequence of the secular
approximation, there are fewer non-zero relaxation matrix components
for the case of unlike spins relative to the situation for like spins. The

Redfield relaxation matrix T'” describing the evolution of ¢ for unlike
spins is,

I Ry 0 0 0 0 0]
I 0 R, 0 0 0 O0]F
all|_ |0 0 Ry 0 0 Rgl|L a8
dr | 8! 0 0 0 R, 0 0|5
Sy 0 0 0 0 Ry 0|8
s 0 0 R, 0 0 R,||S
where
R R
R/, = R}, = Rycos0; + ———* J2r Lsin%6,
R}, = R,cos*0; + Rysin®6;
R R
R,, = Ris = Rycos’0s + 2 + X sin®6s 19)

Rfe = Rcos*0s + Rpsin®0

R’ = R{; = 0norc0s0;cosbs + oropsingsinds

Eq. 19 is similar in many respects to Eq. 17, derived for like-spins, but a
number of clear differences emerge. Note that relaxation matrix com-
ponents depend on both 6; and s (6] # 0s) for unlike spins and that the
transverse cross-relaxation pathways between Iy < Sy and I < S are not
effective, as spins I and S rotate about their z"-axes at different fre-
quencies so that equal amounts of positive and negative magnetization
are transferred between the spins [35]. (This is reflected mathematically
by the fact that the commutator terms giving rise to transverse
cross-relaxation terms in the like spin case now vanish due to the secular
approximation). Thus, cross-relaxation occurs only between the aligned
components, I} and S}, with the well-known cross-relaxation rate con-
stant, onopCc0sO;cosds + oropsindrsinfs [34].

2.2. Relaxation matrix in the tilted frame as predicted from the Solomon
equations

The treatment described above, based initially on the work of Jones
[11], is rigorous in the sense that the resulting relaxation expressions
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hold even in the limit where it is not the case that wo>>w; o, ®s o, and
O eff Teorrs Ws,effTeorr<<1, 50 long as all of the spectral density terms are
kept (i.e., Eq. 14 is not used). However, as mentioned above, for all
practical cases of interest in solution NMR (or at least all that we can
think of), it follows that wo>wy ¢, Ws e, aNd WL efrTeorr; s effTeorr<<1. In
this limit there is a simpler way of calculating relaxation matrices that
has been described in the literature [4,22,23]. Herein, we follow the
approach of Desvaux et al. [4] with a number of modifications, whereby
the relaxation matrix in the tilted doubly rotating frame is obtained by a
series of simple manipulations of the Solomon relaxation matrix in the
rotating frame [21].

In this case the master equation in the rotating frame (o(t) = [Ly, I, I,
Sv Sy, 5,17 can be described as follows

do(t)
dt

_ ( _ i§501. _ 13501.)60) (20)

where the Liouvillian (750 = [7\//’0, ], To =l + QsSs + 01 (I + Sx),
and [,] denotes a commutator operation) is given by

0 —-Q 0 0 0 0

Q] 0 — 0 0 0
= 0 o 0 0 0 0
pSol. __ - 1
7= 0 0 0 -9 o 20
0 0 0 Qg 0 —w
0 0 0 0 W 0
The relaxation superoperator (fSO") is, in turn, defined by
Rf‘l’" 0 0 R‘fﬁ{” 0 0
0 RY 0 0 RZ 0
13501. _ 0 0 Rggl' 0 0 Rgg,' (22)
RY 0 0 RF 0 0
0 R 0 0 RZ 0
0 0 RE 0 0 RY
where the matrix components are
R = R = RY = RS =R,
RY =Ry =R, o)

Sol. __ pSol. __ pSol. __ pSol. __
Ry =R =Ry = Rsy" = oo

Sol. __ pSol. __
Ry = Rgs" = Onor

and the superscript “Sol.” is added to emphasize that the expression was

originally derived by Solomon [21]. Although T'°" is intuitive, and the
terms easily “guessed”, it can be derived rigorously starting from the

expression for 7 pp(t) (Table S1) and Eqgs. 11 and 12, above. Note that
the longitudinal and transverse relaxation terms naturally emerge in
such a derivation. Eqs. 20-23 can be similarly applied to both like and
unlike spins by setting Q; = Qg for like spins. For the case of unlike spins
and when sing;sinfs ~ 0 transverse cross-relaxation is not effective
because I/, and S, precess at different frequencies such that net
magnetization cannot be transferred between the spins [35].

In order to compare the relaxation rates obtained in the tilted doubly
rotating frame where the secular approximation was enforced (Eq. 16-
19), with the corresponding rates in an equivalent frame starting from
the Solomon equations (Eq. 20), we first derive the master equation (Eq.

20) in the tilted frame by introducing a rotation matrix, 3}, that
transforms o(t) to 6'(t) = [I'y, I'y, I'y, S'x, 'y, SZ17. Thus,

, ==

o ()= Ro(t) 24)

where the matrix representation of Z is given by
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cosf; 0 —sinb,; 0 0 0
0 1 0 0 0 0
sind; 0 cosH, 0 0 0
0 0 0 cosfs 0 —sinbg (25)
0 0 0 0 1 0
0 0 0 sinfs 0 cosOy

The inverse rotation % ! can be obtained by interchanging the signs of
01 and g in Eq. 25. By taking the time derivative of both sides of Eq. 24,
the master equation in the tilted frame can be calculated as follows,

do'(t)  =do(r)
= H—L
dt dt

P
= =

— %( _ iJSol. _ I':So[.)a(t)

_ /,/\( _ sl _ fsm.) P! 5/9\?0'(0 (26)
=(- PP Sl -t ;f?lﬁs""@’])o‘/(t)
=(- i:g;’SaL _ f/sl;l.)ﬂ’ (1)
The Liouvillian in the tilted frame is,
§’S{71. — @55{1[.?)\/\?71
[0 — W1 eff 0 0 0 0]
W of 0 0 0 0 0
1o 0 0 0 0 0 27)
=i
0 0 0 0 —Ws eff 0
0 0 0 Ws off 0 0
. O 0 0 0 0 0|
and the relaxation matrix in the tilted frame is given as
%’Sol, — ;?Sol.;—l
s Sol. s Sol. 1 Sol. / Sol.
R 11 0 R 13 R 14 O R 16
0 R/j;]. O O /igl. O
B Rri{;L 0 ri:l. /i'zl. 0 Rrizl. (28)
- 1 Sol. s Sol. 1 Sol. 1 Sol.
41 0 43 44 0 16
0o Ry 0 0 Ri 0
1 Sol. s Sol. 1Sol. 1 Sol.
R 61 0 R 63 64 0 R 66

In Eq. 28 the non-zero matrix components for auto-relaxation are

no= R,c0s6; + R;sin’6),

»n =R

(29)
“ = R;c0s20s + R, sinf

ss = Ra

1 Sol.

R
R
R 331' = Rycos?0; + R,sin’6,
R
R
R = R1c0s?0s + R,sin’fs

and those for cross-relaxation are given by
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[ Sol.  Sol. .
R; =R;, = (R, — R;)sinf;cosd;
; Sol. ; Sol. . .
R, =R, = 0ropcosdcosls + oyogsind;sinfs
/1 Sol. ;s Sol. . .
R, =R = 0oroecost;sinfs — onopsing;cosls
s Sol. /Sol.
R, =R, =ogro (30)
[ Sol.  Sol. . .
R, =R, = oroesingd;cosls — onopcosd;sinfs
 Sol.  Sol. . .
R, =R = oropsind;sinds + oyopcosd;cosls
 Sol.  Sol. .
R, =R = (R, —R;)sinfscosbs

Egs. 27-30 are identical to the results of Desvaux et al. (Eq. 19 in
Ref. [4]) and hold for both unlike (Q; # Qg) and like (Q; = Qg) spins.

It is straightforward to show that the time evolution of the density
matrices in the tilted frame, derived from the Solomon equations (Egs.
26-30), and in the tilted doubly rotating frame (Eqs. 16-19) are identical.
This can be seen in a qualitative way by noting that the effect of the
Liouvillian in Eqs. 26-27 is to rapidly interconvert the x' and y’ com-
ponents of magnetization (i.e., I'y, I'y or §'y, S’y rapidly rotate about the
z'-axis in their respective tilted frames at frequencies of wjy g or wsep,
respectively). This leads to an averaging of auto-relaxation rates of spins
I and S, for example,

| Sol. 1, S0l 1 Sol.
Lave ZE(RII +R22 )
R, +R
= R,cos%0; + 2+ Ky sin®g;
| 81
s Sol. ; Sol. 1 Sol.
S.ave :§(R44 +Rs )
R, +R
= Rycos20s + — L er L sin?6

so that they become equivalent to those in Eqs. 17 and 19. For both like
and unlike spins cross-relaxation between x' and 2 components of
magnetization (I'yol',, I'voS, S'xoS';, and §'ywoI';) can be neglected
because I'y (S',) rapidly oscillates about the 2’ axis so that no net transfer

. : /Sol. _sSol. _,Sol. _,Sol. _,Sol.
of magnetization to I'; (§';) can occur. Thus, R {3, R ,R5; ;R34 ,R 43,

sSol. _sSol. /Sol. i s s
Ry R ,and R, (Eq. 30) can be set to zero. In a similar manner, in

the case of unlike spin pairs (wyef # ws,eff), transverse cross-relaxation
between I'y+S'y, and I'y<>S', also averages to zero because there is no

phase coherence between transverse x’ and y’ components of I and S

. . /Sol. _/Sol. _,Sol. /Sol.
magnetization. Therefore, R}, ,R,; ,R5 , and R, can be further

discarded in this case. With these “modifications” to the relaxation
matrix of Eq. 28, it becomes completely equivalent to the corresponding
matrices in Eqgs. 17 and 19 for like and unlike spins, respectively. As
mentioned above, in practical applications the components perpendic-
ular to the aligned magnetization dephase due to the inhomogeneity of
the applied B; field without contributing to the observed signal;
nevertheless, it is of interest to note that magnetization exchange
involving these components can be averaged to zero even in the limit of
a perfectly homogenous B; field.

An alternative and slightly more mathematical way of showing the
equivalence illustrated above is to express Eq 26 in the tilted doubly

rotating frame. Here we define the superoperator @ (t) that transforms
o(t)too'(t) =}, I, I, S, Sy, S,

o'(t)y =% (t)o (1) (32)

by

exp (i o51) B, exp( —i7 1)

N

o
jov]
[

(33)

=
|

, ,
Ol + s S,
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where 7 off is the Hamiltonian of the effective field (see Eq. 5). The

explicit matrix representation of ?}\i'(t) is given by

COSWy et sinwy gt 0 0 0 0
—Sin@y gt cOsW; it O 0 0 0
=, 0 0 1 0 0 0
% =
% (1) 0 0 0 cOsWsyrt  Sinwgyrt 0 (34
0 0 0  —sinwgyt coswgept O
0 0 0 0 0 1
where each matrix component can be obtained from
=, B |ex i,f/'“\/?/e 1)Bexp( — i,f/'“\/Ve t
7). = (B,lexp(i7 1) B,exp( 4t)) 35)

" (B,B,)

By taking the time-derivative of both sides of Eq. 32, we arrive at a
master equation in which the Liouvillian part is eliminated, by effec-
tively incorporating it into the relaxation matrix:

) 4T 0o )
A= = do (1)
—E</f (t)o (1) + Z# (1) 7

d=,, = =, = 2 ,
= ()7 (1) (1) + % (1) (—iZ TG (1)

A=, = =, N
=7 ()7 (1) Yo" () + R () (—i LT % (1)

(1) (1)

’ ’

= (%@ OZ (1) iR ()L 7 () —

= =,
D,

Z (TS (t)’l)a”(t)

=—Z' W% (16" (1)

—_ ?”SUI'G//(Z)
(36)

—

In the derivation of Eq. 36, we have used the relation, %,/9‘7 (t)?}/ 0" -

i%' (t) "5 %' (t)"' = 0 which follows from Eqs. 27 and 34. Thus, the
Solomon relaxation matrix in the tilted doubly rotating frame is given by

IS0l (= 7' (0TS %' (t)™1). Table S3 lists the 36 elements of IS

"ol (equivalent to the

obtained in this way. Assuming that wy ., ws_eﬂc>>fr
secular approximation invoked in Eq. 12) it follows that the only terms
contributing to the evolution of o¢”(¢t) are those that are time-
independent. The expressions in Table S3 then reduce to those for like

(Egs. 16 and 17) and unlike (Egs. 18 and 19) spins given above.
3. Concluding remarks

We have presented a tutorial describing the calculation of dipolar
relaxation for a two spin I-S homonuclear spin-system in the presence of
a B field. Two different approaches have been taken, including one
where a series of transformations was accomplished, ultimately trans-
ferring the B; field and chemical shift contributions to the dipolar
Hamiltonian [11], with the relaxation matrix in this interaction repre-
sentation of the effective field calculated by enforcing the secular
approximation. Alternatively the relaxation evolution of the I-S spin
system can be described simply from the Solomon Equations [21], as
discussed previously [4]. As the equations involved appear, at first
glance, to be different, a thoughtful analysis of both approaches is a
useful pedagogical exercise in understanding elements of relaxation
theory. In the limit where wo>>w; o, Wsefr, aNd OfefrTeorr, O effTeor<K1,
which is fulfilled in essentially all applications in solution NMR, iden-
tical results are obtained, as demonstrated here. Where the limit above is
not fulfilled, calculation of the relaxation elements in the interaction
representation of the effective field [11] ensures that the correct
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frequency components of the spectral densities are obtained.
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