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The real Fourier transform applied to anti-phase CEST 
A real Fourier transform is used in this study to transform the original frequency-

domain anti-phase CEST profiles to time-domain signals, each resembling an FID; this 

facilitates ‘decoupling’ with a DNN architecture similar to our previous FID-Net1. When 

applying a discrete Fourier transform (DFT) to frequency domain NMR spectra one typically 

applies the DFT to complex data (real, imaginary). The anti-phase CEST profiles consist of 

pure real values without an imaginary component, and we therefore use a real Fourier 

transform to generate the time-domain signal, without the redundancy that would accompany 

a complex DFT (see below). 

 
Fig. S1. (A) A synthetic frequency domain 1HN anti-phase CEST profile. The profile has been 

sampled with 64 B1 offsets (points), the 1JHN scalar coupling is –92 Hz, and the resonance frequency is 

250 Hz. (B) Fourier transforms of the frequency domain 1HN anti-phase CEST profile. The classical 

complex discrete Fourier transform (complex DFT) of the frequency domain anti-phase CEST profile 

is shown with continuous lines, while the real discrete Fourier transform is shown with filled circles. 

The time-domain is calculated from the range of 1H offsets in the CEST profile (x-axis; 2000 Hz), 

with t = {0,1,…,63}/(2000 Hz). 

 

To illustrate this, the synthetic anti-phase CEST profile in Fig S1A is considered. For 

a discrete complex Fourier transform of pure real data (N = 64 data points), Fig S1B, the 
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output is Hermitian-symmetric so that approximately half (N/2 – 1 for even N and (N – 1)/2 for 

odd N) of the points are therefore redundant. This is also clear from Fig S1, where the last 31 

complex points form a Hermitian-symmetric reflection about point N/2+1 (the 33rd point; 

dashed line in Fig S1B). Thus, points N/2+1+i and N/2+1–i are complex conjugate pairs. A 

real Fourier transform only retains the N/2+1 non-redundant points and a real FT is, 

therefore, used to transform the frequency-domain CEST profiles to avoid redundant input to 

the DNN. 
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Supporting Figures 

 

Fig. S2. Neural network architecture for the DNN used to transform anti-phase CEST profiles (AP 

CEST) to in-phase CEST profiles, consisting of a modified LSTM module (LSTMm) and a 

convolutional module (Convm). For the architecture used here, i = {0, 1, 2, 3, 4}. A box represents a 

layer with trainable parameters, that is, a tensor multiplication followed by an activation, whereas a 

circle represents an elementwise operation. A box with ‘T’ denotes a linear layer with {tanh(x) + 

0.02x} activation, ‘σ’ denotes a linear layer with {sigmoid(x) + 0.02x} activation. The tanh(x) + 0.02x 

and sigmoid(x) + 0.02x activation functions were used instead of tanh(x) and sigmoid(x) to obtain 

better training of the DNN. A circle with ‘+’ denotes an elementwise addition layer, and a circle with 

‘×’ denotes an elementwise multiplication layer. All details are provided in Table S1 and in the source 

code. 
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Fig. S3. Evaluation of the DNNTR network, which transforms anti-phase to in-phase CEST profiles for 

a two-site chemically exchanging system, G ⇌	 E, considering the applied B1 field, the chemical 

exchange parameters, and the number of sampled points in the CEST frequency dimension. Shown 

are two-dimensional histograms depicting the probability of a given root-mean-square deviation 

(RMSD) versus a given parameter from a set of parameters used to generate the CEST profiles. The 

RMSD is defined as #mean ()DNN!"(𝐂𝐄𝐒𝐓#$(𝜔)) − 𝐂𝐄𝐒𝐓%$,'()*+'(𝜔)4
,5 =

	#mean ()𝐂𝐄𝐒𝐓%$,-)+.(𝜔) − 𝐂𝐄𝐒𝐓%$,'()*+'(𝜔)4
,5 (A) RMSD versus the field strength of the applied, 

B1 field. (B) RMSD versus the population of the low populated state, E. (C) RMSD versus the overall 

exchange rate, kex. (D) RMSD versus the number of points sampled in the input anti-phase CEST 

profile. 
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Fig. S4. Schematic representation of the DNN(cs) neural network architecture used to determine 

chemical shifts from the frequency-domain in-phase CEST profiles. A box represents a layer with 

trainable parameters, that is, a tensor multiplication followed by an activation, whereas a circle 

represents an elementwise operation. A box with ‘Conv, k = kernel_size’ refers to a one-dimensional 

convolutional layer with kernel size kernel_size and a dilation rate of 1 (no dilation). The numbers 

above the arrows show the size of the tensor being transferred. The operation, ‘Norm’ refers to a batch 

normalisation layer, ‘MaxPool’ refers to a one-dimensional MaxPool layer, and ‘AveragePool’ refers 

to an average pooling layer. A box with ‘σ’ denotes a linear layer with sigmoid(x) activation and a 

circle with ‘σ’ refers to elementwise sigmoidal activation. Similarly, ‘R’ denotes a rectified linear 

unit, x → (x + |x|)/2. The predictions follow a sigmoidal activation and fω,pred and cpred are therefore 

between 0 and 1. All details are provided in Table S1 and in the source code. 
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Fig S5. Assessment of the predicted confidence, cpred, for two-site chemically exchanging systems, G 

⇌	E, where random Gaussian noise was added with a standard deviation of 0.01 of the maximum 

value of each anti-phase CEST profile. (A, B) For 100,000 random anti-phase CEST profiles the 

predicted confidence of chemical shifts of nuclei from either ground (A) or low-populated (B) states 

has been plotted against the difference in chemical shifts between the ground-state, δG, and the low-

populated state, δE, |Δδ|. (A) shows the predicted confidence for δG, whereas (B) shows the confidence 

for δE. A clear trend is observed, where low confidence (large uncertainty) is mainly observed for 

small chemical shifts differences, Δδ. For small Δδ the DNN occasionally predicts the chemical shift 

of the ground state with lower confidence than the low-populated state. This is merely a reflection of 

the fact that only one chemical shift can be confidently predicted. (C) Predicted chemical shift 

differences, |Δδ|pred = |δG,pred – δE,pred| plotted against the true chemical shift differences, |Δδ|true = |δG,true 

– δE,true|. The 100,000 points in the scatter plot have been coloured according to the confidence, cpred = 

min(cpred(δE), cpred(δG)). For the small fraction of points with |Δδ|pred ≲ 0.1 and |Δδ|true up to 

approximately 1.5 ppm, the anti-phase CEST profiles typically have small ‘dips’ close to the noise for 

the low-populated state, which is generally caused by small kex and/or small pE. One such example is 

shown in the inset, where B1 = 32 Hz, kex = 16 s-1, and pE = 2.4%. (D) Histogram showing the 

distribution of differences between true chemical shift differences, |Δδ|true, and predicted chemical 

shift differences, |Δδ|pred. 
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Fig S6. Quantitative assessment of sequential DNNs for the determination of chemical shifts from 

anti-phase 1HN CEST profiles. 100,000 synthetic anti-phase 1HN CEST profiles reporting on a three-

site chemical exchange process,	E1 ⇌	G ⇌	E2, were generated, analysed via the sequential DNN 

procedure described in the text, and the accuracy of predicted chemical shifts for ground (A,D), and 

low-populated (E1: B,E; E2: C, F) states assessed. (A, B, C) show two-dimensional histograms for the 

100,000 CEST profiles of the difference between predicted δpred, and true chemical shifts, δtrue. The 

histogram is calculated with a cpred interval of 0.05 (see Fig 4 for details). An overlay is made with the 

68.3% confidence level for the analysed CEST profiles as a function of cpred (black dashed line), as 

well as the predicted uncertainty, σpred. For cpred > 0.4, the predicted uncertainty, σpred, agrees well with 

the confidence levels obtained from the analysis of the 100,000 profiles. (D,E,F) show the 

distributions of confidences obtained from the assessment. In cases where cpred values are close to 0 

only a single dip is observed in CEST profiles. 
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Fig S7. Quantitative assessment of sequential DNNs with regards to the distribution of the expected 

confidence, cpred, when increased Gaussian noise is added to the input anti-phase CEST profiles. The 

100,000 synthetic anti-phase 1HN CEST profiles reporting on two-state chemical exchange were 

generated as described in the main text. The top row represents the assessment presented in Fig 4, 

where Gaussian noise with a standard deviation of 0.01 was added to the input anti-phase CEST 

profiles. The anti-phase CEST profile shown as an inset in the right column is the same profile as that 

shown in Fig 1A. In the second row, Gaussian noise with a standard deviation of 0.02 was added to 

the input profiles, and in the bottom row Gaussian noise with a standard deviation of 0.04 was added. 

Histograms in the left column report on the predicted confidences for the ground-state chemical shifts, 

and the histograms in the right column report on the confidences for the predicted chemical shifts of 

the low-populated state, E.   
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Table S1: Description of the layers used in the Neural Networks DNNTR and DNNCS: 

Layer symbol Operations 
 

T 
   A linear layer with hyperbolic tangent, tanh(x), activation function and 
bias. The layer transforms, in a linear manner, an input vector x into an 
output vector y. This layer contains a parameter-tensor, A, and a 
parameter-vector, b. Specifically, y = {tanh(z1), tanh(z2), …, tanh(zn)}, 
where z = {z1, z2, …, zn} and z = Ax + b. Training the neural network 
involves optimisation of all the parameters of A and b. 
  

 
T 

   An elementwise operation, x → tanh(x). The layer transforms an input 
vector x into an output vector y, specifically, y = {tanh(x1), tanh(x2), …, 
tanh(xn)}. There are no parameters to be optimised. 
 

 
σ 

   A linear layer with sigmoidal activation and bias. This layer is similar to 
the linear ‘T’ layer described above, only difference is that a sigmoidal 
function is used, φ(x) = (1+exp(-x))-1, instead of the hyperbolic tangent. 
 

 
σ 

   An elementwise operation, x → φ(x), where φ(x) = (1+exp(-x))-1. The 
layer transforms an input vector x into an output vector y, specifically, y =  
{ φ(x1), φ(x2), …, φ(xn)}. There are no parameters to be optimised. 
 

 
Conv 

   A one-dimensional convolutional layer, which contains a parameter-
kernel, k = {k1, k2, … } of size kernel_size and a bias b. For an input vector 
x of size n, the input vector is first zero-filled with kernel_size – 1 zeros. 
Either (i, DNNTR) all zeros added to the end of the input or (ii, DNNCS) 
zeros will be added to both the beginning and end of the input vector and if 
an odd number of zeros are required one additional zero is added to the 
end. After zero-filling, the output vector, y, is given by y = {𝑏 + ∑𝑘!𝑥!, 
𝑏 + ∑𝑘!𝑥!"#, … }. Training the neural network involves optimisation of 
all the parameters of k and b. 
   As an example, consider the following vector x = {0.5, 0.5, 0.9, 2.0, 0.5, 
2.0, 0.9, 0.5, 0.5}, whose elements when plotted as intensities give a ‘low 
resolution’ doublet, flanked by baseline. For a kernel k = {0, 1, 1} and a 
bias b= -1 then the output y will be calculated by first adding kernel_size – 
1 = 2 zeros to {0.5, 0.5, 0.9, 2.0, 0.5, 2.0, 0.9, 0.5, 0.5, 0.0, 0.0} → x. The 
convolution is now given by:  
y = { 0*0.5 + 1*0.5 + 1*0.9 – 1,  
  0*0.5 + 1*0.9 + 1*2.0 – 1,  
         0*0.9 + 1*2.0 + 1*0.5 – 1,   
         0*2.0 + 1*0.5 + 1*2.0 – 1,  
      0*0.5 + 1*2.0 + 1*0.9 – 1, 
    0*2.0 + 1*0.9 + 1*0.5 – 1, 
    0*0.9 + 1*0.5 + 1*0.5 – 1, 
    0*0.5 + 1*0.5 + 1*0.0 – 1, 
 0*0.5 + 1*0.0 + 1*0.0 – 1} = {0.4, 1.9, 1.5, 1.5, 1.9, 0.4, 0, -0.5, -1}. 
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Dilated 
Conv 

   A one-dimensional dilated convolutional layer, which contains a 
parameter-kernel, k = {k1, k2, … } of size kernel_size and a bias b. The 
dilation rate is d. For an input vector x of size n, the input vector is first 
zero-filled with d×(kernel_size – 1) zeros. Subsequently the output vector, 
y, is given by y = {𝑏 + ∑𝑘!𝑥#"$×(!'#), 𝑏 + ∑𝑘!𝑥)"$×(!'#), … }. Training 
the neural network involves optimisation of all the parameters of k and b. 
   As an example, consider the example above with x = {0.5, 0.5, 0.9, 2.0, 
0.5, 2.0, 0.9, 0.5, 0.5}. For a dilation rate = 2, a kernel k = {0, 1, 1}, a bias 
b = -1, then the output y will be calculated by first adding 2*(3 – 1) = 4 
zeros to give {0.5, 0.5, 0.9, 2.0, 0.5, 2.0, 0.9, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0} → 
x. The convolution is now given by:  
y = { 0*0.5 + 1*0.9 + 1*0.5 – 1,  
  0*0.5 + 1*2.0 + 1*2.0 – 1,  
         0*0.9 + 1*0.5 + 1*0.9 – 1,   
         0*2.0 + 1*2.0 + 1*0.5 – 1,  
      0*0.5 + 1*0.9 + 1*0.5 – 1, 
    0*2.0 + 1*0.5 + 1*0.0 – 1, 
    0*0.9 + 1*0.5 + 1*0.0 – 1, 
 0*0.5 + 1*0.0 + 1*0.0 – 1, 
 0*0.5 + 1*0.0 + 1*0.0 – 1}= {0.4, 3, 0.4, 1.5, 0.4, -0.5, -0.5, -1, -1} 
 
   The convolutional layers used for DNNTR and DNNCS have several 
output ‘filters’, meaning that the convolutional layer effectively contains 
multiple kernels of the same size (and one b per kernel), thereby generating 
multiple output vectors y. More specifically, consider an input, x, 
consisting of I input filters and a length L. This input, x, can be described 
by a matrix of size {L,I} and its elements denoted x l,i. Now consider the 
kernel k, with a kernel size kernel_size. If we have J output filters, then the 
total kernel used for the one-dimensional convolution can be described 
with a tensor of size {kernel_size,I,J}. After zero-filling of the input with 
kernel_size -1 zeros, and with a dilation rate of 1 (so that the input x 
consists of L+kernel_size-1 elements), the output of size {L,J} is given by 
𝐲*,, =	∑ ∑ 𝐱-"*'#,! × 𝐤-,!,,-! . 
 

 
R 

   A linear layer with rectified linear activation and bias. This layer is 
similar to the linear ‘T’ layer described above, only difference is that a 
rectified linear unit function is used, φ(x) = (x + |x|)/2, instead of the 
hyperbolic tangent. 
  

 
R 

   An elementwise operation, x → φ(x), where φ(x) = (x + |x|)/2. The layer 
transforms an input vector x into an output vector y, specifically, y =  
{ φ(x1), φ(x2), …, φ(xn)}. There are no parameters to be optimised. 
 

 
AveragePool 

   An average pooling layer along one axis, with a pool size of 2 and a 
stride of 2. For an input vector x = {x1, x2, …, xn} the output vector y is 
given by 0.5{x1+x2, x3+x4, …}. There are no parameters to be optimised. 
   As an example, consider the vector x = {0.5, 0.5, 0.9, 2.0, 0.5, 2.0, 0.9, 
0.5, 0.5}, then the average pooling with pool size of 2 and stride 2 will 
give: 
y = { (0.5+0.5)/2, 
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 (0.9+2.0)/2, 
 (0.5+2.0)/2, 
 (0.9+0.5)/2} = {0.5, 1.45, 1.25, 0.7} 
Note that the last number of x is ignored here because the pooling is not 
valid.  
 

   
GlobalAverage 

   A global averaging along one axis. For an input vector x = {x1, x2, …, 
xn} the output scalar is average(x1, x2, x3, …}. There are no parameters to 
be optimised. 

  
 

MaxPool 
   A maximum pooling layer with a pool size of 3 and a stride of 2. For an 
input vector x = {x1, x2, …, xn} the output vector y is given by {max(x1, x2, 
x3), max(x3, x4, x5), …}. There are no parameters to be optimised. 
   As an example, consider the vector x = {0.5, 0.5, 0.9, 2.0, 0.5, 2.0, 0.9, 
0.5, 0.5}, then the maximum pooling with pool size of 3 and stride 2 will 
give: 
y = { max(0.5, 0.5, 0.9), 
 max(0.9, 2.0, 0.5), 
 max(0.5, 2.0, 0.9), 
 max(0.9, 0.5, 0.5)} = {0.9, 2.0, 2.0, 0.9} 
As for the averaging pooling, only valid outputs are calculated. Thus, when 
the size of the input vector, length(x), is odd, the output for this layer has a 
size of (length(x)-1)/2, while when length(x) is even, the output for this 
layer has a size of (length(x)-2)/2.  Thus, in the present case length(x) = 9 
and the size of the output is (length(x)-1)/2 = 4. 
 

 
Norm 

   A batch-normalisation layer, which maintains the mean output close to 0 
and the output standard deviation close to 1. For each channel of the input 
the normalisation is performed along the mini-batch dimension, x. 
Specifically for each channel the output y is y = γ ( x – mean(x) )/σ(x) + b, 
where σ(x) is the standard deviation of x. This layer has two parameters to 
be optimised per channel of the input, γ and b. 

  
 

+ 
   An elementwise addition layer. For two input vectors, x and y, of 
identical size, the output vector, z, is calculated as: z = {z1, z2, …, zn} = 
{x1+y1, x2+y2, …, xn+yn}. 
 

 
× 

   An elementwise multiplication layer. For two input vectors, x and y, of 
identical size, the output vector, z, is calculated as: z = {z1, z2, …, zn} = 
{x1*y1, x2*y2, …, xn*yn}. 
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Python Code for Building DDNTR 
NP=65 
FilterFactor=32 
kernel=(6,1) 
 
def build_model(): 
    # 
    import tensorflow as tf 
    # 
    def dfh_gelu(x): 
        return tf.add(tf.tanh(x), tf.math.scalar_mul( 0.02,x)) 
    def dfh_sigm(x): 
        return tf.add(tf.math.sigmoid(x), tf.math.scalar_mul( 0.02,x)) 
     
    tf.keras.utils.get_custom_objects().update({'dfh_gelu': tf.keras.layers.Activation(dfh_gelu), 'dfh_sigm': 
tf.keras.layers.Activation(dfh_sigm)}) 
 
    time_0   =  tf.keras.layers.Input( shape=(NP*2,), name='Input_time' ) 
    ipap_0   =  tf.keras.layers.Input( shape=(NP*2,), name='Input_ipap' ) 
     
    # 
    xi = tf.expand_dims( ipap_0, axis=-1 ) # ( Batch, [real,imag] ) 
    hi = tf.expand_dims( time_0, axis=-1 ) 
 
    def lstm_module(filters): 
        def inside(x): 
            # x[0]: main   track 
            # x[1]: memory track 
 
            hidden_0_1 = tf.keras.layers.Dense( filters, activation=dfh_gelu, use_bias=True)( x[1] ) 
             
            hidden_1_1 = tf.keras.layers.Dense( filters, activation=dfh_sigm)(x[0]) 
            hidden_1_2 = tf.keras.layers.Dense( filters, activation=dfh_sigm)(x[0]) 
            hidden_1_3 = tf.keras.layers.Dense( filters, activation=dfh_gelu)(x[0]) 
            hidden_1_4 = tf.keras.layers.Dense( filters, activation=dfh_sigm)(x[0]) 
 
            hidden_2_1 = tf.keras.layers.multiply([hidden_1_1,hidden_0_1]) 
            hidden_2_2 = tf.keras.layers.multiply([hidden_1_2,hidden_1_3]) 
            # 
            hidden_3_1 = tf.keras.layers.add( [hidden_2_1, hidden_2_2]) 
            # 
            hidden_4_1 = tf.keras.layers.Activation(activation=dfh_gelu)( hidden_3_1 ) 
            hidden_4_2 = tf.keras.layers.multiply([hidden_4_1,hidden_1_4]) 
            # 
            return hidden_4_2, hidden_3_1 
        return inside 
 
    def conv_layer(x_shp=4, y_shp=4, kernel=11, name=''): 
        def inside(x): 
 
            x1 =  tf.expand_dims( x, axis=-2) 
 
            x2t = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[1,1], activation=dfh_gelu, 
padding='valid', name='conv1d_x2t'+name )(x1) 
            x2s = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[1,1], activation=dfh_sigm, 
padding='valid', name='conv1d_x2s'+name )(x1) 
            x2  = tf.keras.layers.Conv2DTranspose( FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1], 
padding='valid')(tf.math.multiply( x2t,x2s )) 
             
            x3i = tf.keras.layers.ZeroPadding2D( ( (0,1*(kernel[0]-1)),(0,0)))(x2) 
            x3t = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[2,1], activation=dfh_gelu, 
padding='valid', name='conv1d_x3t'+name )(x3i) 
            x3s = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[2,1], activation=dfh_sigm, 
padding='valid', name='conv1d_x3s'+name )(x3i) 
            x3  = tf.keras.layers.Conv2DTranspose( FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1], 
padding='valid')(tf.math.multiply( x3t, x3s )) 
            # 
            x4i = tf.keras.layers.ZeroPadding2D( ( (0,2*(kernel[0]-1)),(0,0)))(x3) 
            x4t = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[3,1], activation=dfh_gelu, 
padding='valid', name='conv1d_x4t'+name )(x4i) 
            x4s = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[3,1], activation=dfh_sigm, 
padding='valid', name='conv1d_x4s'+name )(x4i) 
            x4  = tf.keras.layers.Conv2DTranspose( FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1], 
padding='valid')(tf.math.multiply( x4t, x4s )) 
 
            x5i = tf.keras.layers.ZeroPadding2D( ( (0,3*(kernel[0]-1)),(0,0)))(x4) 
            x5t = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[4,1], activation=dfh_gelu, 
padding='valid', name='conv1d_x5t'+name )(x5i) 
            x5s = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[4,1], activation=dfh_sigm, 
padding='valid', name='conv1d_x5s'+name )(x5i) 
            x5  = tf.keras.layers.Conv2DTranspose( FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1], 
padding='valid')(tf.math.multiply(x5t,x5s)) 
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            x6i = tf.keras.layers.ZeroPadding2D( ( (0,5*(kernel[0]-1)),(0,0)))(x5) 
            x6t = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[6,1],activation=dfh_gelu, padding='valid', 
name='conv1d_x6t'+name )(x6i) 
            x6s = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[6,1],activation=dfh_sigm, 
padding='valid', name='conv1d_x6s'+name )(x6i) 
            x6  = tf.keras.layers.Conv2DTranspose( FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1], 
padding='valid')(tf.math.multiply(x6t,x6s)) 
 
            x7i = tf.keras.layers.ZeroPadding2D( ( (0,7*(kernel[0]-1)),(0,0)))(x6) 
            x7t = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[8,1],activation=dfh_gelu, padding='valid', 
name='conv1d_x7t'+name )(x7i) 
            x7s = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[8,1],activation=dfh_sigm, 
padding='valid', name='conv1d_x7s'+name )(x7i) 
            x7  = tf.keras.layers.Conv2DTranspose( FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1], 
padding='valid')(tf.math.multiply(x7t,x7s)) 
            # 
            x8i = tf.keras.layers.ZeroPadding2D( ( (0,9*(kernel[0]-1)),(0,0)))(x7) 
            x8t = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[10,1],activation=dfh_gelu, 
padding='valid', name='conv1d_x8t'+name )(x8i) 
            x8s = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[10,1],activation=dfh_sigm, 
padding='valid', name='conv1d_x8s'+name )(x8i) 
            x8  = tf.keras.layers.Conv2DTranspose( FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1], 
padding='valid')(tf.math.multiply(x8t,x8s)) 
 
            x9i = tf.keras.layers.ZeroPadding2D( ( (0,11*(kernel[0]-1)),(0,0)))(x8) 
            x9t = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[12,1],activation=dfh_gelu, 
padding='valid', name='conv1d_x9t'+name )(x9i) 
            x9s = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[12,1],activation=dfh_sigm, 
padding='valid', name='conv1d_x9s'+name )(x9i) 
            x9  = tf.keras.layers.Conv2DTranspose( FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1], 
padding='valid')(tf.math.multiply(x9t,x9s)) 
 
            x10i = tf.keras.layers.ZeroPadding2D( ( (0,13*(kernel[0]-1)),(0,0)))(x9) 
            x10t = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[14,1],activation=dfh_gelu, 
padding='valid', name='conv1d_x10t'+name )(x10i) 
            x10s = tf.keras.layers.Conv2D( FilterFactor, kernel_size=kernel, dilation_rate=[14,1],activation=dfh_sigm, 
padding='valid', name='conv1d_x10s'+name )(x10i) 
            x10  = tf.keras.layers.Conv2DTranspose( FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1], 
padding='valid')(tf.math.multiply(x10t,x10s)) 
 
            x15 = tf.keras.layers.Add()([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10]) 
 
            return tf.squeeze( x15, axis=2) 
             
        return inside 
     
    def lstm_layer(x_shp=4, y_shp=4, kernel=11, name=''): 
        def inside(x): 
 
            x0 = conv_layer(x_shp=x_shp, y_shp=y_shp, kernel=kernel, name='x_'+name)(x[0]) 
            h0 = conv_layer(x_shp=x_shp, y_shp=y_shp, kernel=kernel, name='h_'+name)(x[1]) 
            # 
            x00 = tf.keras.layers.Permute( (2,1))(x0) 
            h00 = tf.keras.layers.Permute( (2,1))(h0) 
            # 
            x11, h11 = lstm_module( x_shp )( [ x00, h00] ) 
            # 
            x1 = tf.keras.layers.Permute( (2,1))(x11) 
            h1 = tf.keras.layers.Permute( (2,1))(h11) 
            # 
            # final transformation 
            x0p = tf.keras.layers.add( [ x0, \ 
                     tf.keras.layers.multiply( [ \ 
                         tf.keras.layers.Dense( FilterFactor*2, activation=dfh_gelu)(x[1]),   \ 
                              tf.keras.layers.Dense( FilterFactor*2, activation=dfh_gelu)(x1) \ 
                                                ]) \ 
                                        ] ) 
            # 
            h0p = tf.keras.layers.add( [ h0, \ 
                     tf.keras.layers.multiply( [ \ 
                         tf.keras.layers.Dense( FilterFactor*2, activation=dfh_gelu)(x[0]),   \ 
                              tf.keras.layers.Dense( FilterFactor*2, activation=dfh_gelu)(h1) \ 
                                                ]) \ 
                                        ] ) 
 
            return x0p,h0p 
        return inside 
 
    x1,h1 = lstm_layer(x_shp=2*NP,y_shp=1, kernel=kernel, name='_l1')([ xi,hi] ) 
    x2,h2 = lstm_layer(x_shp=2*NP,y_shp=1, kernel=kernel, name='_l2')([ x1,h1] ) 
    x3,h3 = lstm_layer(x_shp=2*NP,y_shp=1, kernel=kernel, name='_l3')([ x2,h2] ) 
    x4,h4 = lstm_layer(x_shp=2*NP,y_shp=1, kernel=kernel, name='_l4')([ x3,h3] ) 
    x5,h5 = lstm_layer(x_shp=2*NP,y_shp=1, kernel=kernel, name='_l5')([ x4,h4] ) 
    # 
    xhs = tf.keras.layers.concatenate([x1,x2,x3,x4,x5,h1,h2,h3,h4,h5], axis=2) 
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    xhf = tf.keras.layers.Dense( 1, activation=dfh_gelu)( xhs ) 
    #     
    final_rshp  = tf.squeeze( tf.keras.layers.Activation('linear', dtype='float32')( xhf ), axis=-1 ) 
    final_rshp  = tf.math.scalar_mul( tf.constant( NP, dtype=tf.dtypes.float32 ), final_rshp ) 
    #     
    final = tf.keras.models.Model(inputs=(time_0, ipap_0), outputs=final_rshp) 
    # 
    final.compile(optimizer=tf.keras.optimizers.Adam(), 
                  loss='mse', 
                  metrics=['mse','mae']) 
    return final 
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Python Code for Building DDNCS 
     
def build_model_denseConv(filters=16): 
    # 
    import tensorflow as tf 
    # 
 
    def dense_block(x, filty, num_layers): 
        stack = [] 
        x = alt_conv(x, filty) 
        stack.append(x) 
 
        for k in range(num_layers-1): 
            if k>0: 
                x = alt_conv(keras.layers.Concatenate()(stack), filty) 
            else: 
                x = alt_conv(x, filty) 
 
            stack.append(x) 
 
        return keras.layers.Concatenate()(stack) 
 
    def alt_conv(x, filty): 
        x = keras.layers.BatchNormalization()(x) 
        x = keras.layers.ReLU()(x) 
        x = keras.layers.Conv1D(4*filty, kernel_size=1, strides=1, padding = 'same')(x) 
 
        x = keras.layers.BatchNormalization()(x) 
        x = keras.layers.ReLU()(x) 
        x = keras.layers.Conv1D(filty, kernel_size=3, strides=1, padding = 'same')(x) 
        return x 
 
    def transition(x): 
        x = keras.layers.BatchNormalization()(x) 
        x = keras.layers.ReLU()(x) 
        x = keras.layers.AveragePooling1D(pool_size=2, strides = 2)(x) 
 
        return x 
 
    input =  keras.layers.Input(shape=[128,1]) 
    x = input 
    x = keras.layers.Conv1D(filters, kernel_size=7, strides=1, padding = 'same')(x) 
    x = keras.layers.MaxPool1D(pool_size=3, strides=2)(x) 
 
    x = dense_block(x, filters, 6) 
    x = transition(x) 
 
    x = dense_block(x, filters, 12) 
    x = transition(x) 
 
    x = dense_block(x, filters, 32) 
    x = transition(x) 
 
    x = dense_block(x, filters, 32) 
    x = keras.layers.BatchNormalization()(x) 
    x = keras.layers.ReLU()(x) 
    x = keras.layers.GlobalAveragePooling1D()(x) 
    x = keras.layers.Dense(256, activation="relu")(x) 
    fin_dens = keras.layers.Dense(6, activation="sigmoid")(x) 
    fin_dens_reshape = keras.layers.Reshape((3, 2), input_shape=(6,))(fin_dens) 
    # 
    model = keras.Model(inputs=[input], outputs=[fin_dens_reshape]) 
    # 
    model.compile(loss=unique_pairs_loss, 
                  optimizer=keras.optimizers.Adam(lr=0.33e-4), 
                  metrics=[unique_pairs_loss, conf_loss] 
    ) 
    # 
    return model 
 


