
1

Supporting Material for

Towards autonomous analysis of Chemical Exchange Saturation

Transfer experiments using Deep Neural Networks

Gogulan Karunanithy, Tairan Yuwen, Lewis E Kay, and D Flemming Hansen

2

The real Fourier transform applied to anti-phase CEST
A real Fourier transform is used in this study to transform the original frequency-

domain anti-phase CEST profiles to time-domain signals, each resembling an FID; this

facilitates ‘decoupling’ with a DNN architecture similar to our previous FID-Net1. When

applying a discrete Fourier transform (DFT) to frequency domain NMR spectra one typically

applies the DFT to complex data (real, imaginary). The anti-phase CEST profiles consist of

pure real values without an imaginary component, and we therefore use a real Fourier

transform to generate the time-domain signal, without the redundancy that would accompany

a complex DFT (see below).

Fig. S1. (A) A synthetic frequency domain 1HN anti-phase CEST profile. The profile has been

sampled with 64 B1 offsets (points), the 1JHN scalar coupling is –92 Hz, and the resonance frequency is

250 Hz. (B) Fourier transforms of the frequency domain 1HN anti-phase CEST profile. The classical

complex discrete Fourier transform (complex DFT) of the frequency domain anti-phase CEST profile

is shown with continuous lines, while the real discrete Fourier transform is shown with filled circles.

The time-domain is calculated from the range of 1H offsets in the CEST profile (x-axis; 2000 Hz),

with t = {0,1,…,63}/(2000 Hz).

To illustrate this, the synthetic anti-phase CEST profile in Fig S1A is considered. For

a discrete complex Fourier transform of pure real data (N = 64 data points), Fig S1B, the

3

output is Hermitian-symmetric so that approximately half (N/2 – 1 for even N and (N – 1)/2 for

odd N) of the points are therefore redundant. This is also clear from Fig S1, where the last 31

complex points form a Hermitian-symmetric reflection about point N/2+1 (the 33rd point;

dashed line in Fig S1B). Thus, points N/2+1+i and N/2+1–i are complex conjugate pairs. A

real Fourier transform only retains the N/2+1 non-redundant points and a real FT is,

therefore, used to transform the frequency-domain CEST profiles to avoid redundant input to

the DNN.

4

Supporting Figures

Fig. S2. Neural network architecture for the DNN used to transform anti-phase CEST profiles (AP

CEST) to in-phase CEST profiles, consisting of a modified LSTM module (LSTMm) and a

convolutional module (Convm). For the architecture used here, i = {0, 1, 2, 3, 4}. A box represents a

layer with trainable parameters, that is, a tensor multiplication followed by an activation, whereas a

circle represents an elementwise operation. A box with ‘T’ denotes a linear layer with {tanh(x) +

0.02x} activation, ‘σ’ denotes a linear layer with {sigmoid(x) + 0.02x} activation. The tanh(x) + 0.02x

and sigmoid(x) + 0.02x activation functions were used instead of tanh(x) and sigmoid(x) to obtain

better training of the DNN. A circle with ‘+’ denotes an elementwise addition layer, and a circle with

‘×’ denotes an elementwise multiplication layer. All details are provided in Table S1 and in the source

code.

5

Fig. S3. Evaluation of the DNNTR network, which transforms anti-phase to in-phase CEST profiles for

a two-site chemically exchanging system, G ⇌	 E, considering the applied B1 field, the chemical

exchange parameters, and the number of sampled points in the CEST frequency dimension. Shown

are two-dimensional histograms depicting the probability of a given root-mean-square deviation

(RMSD) versus a given parameter from a set of parameters used to generate the CEST profiles. The

RMSD is defined as #mean ()DNN!"(𝐂𝐄𝐒𝐓#$(𝜔)) − 𝐂𝐄𝐒𝐓%$,'()*+'(𝜔)4
,5 =

	#mean ()𝐂𝐄𝐒𝐓%$,-)+.(𝜔) − 𝐂𝐄𝐒𝐓%$,'()*+'(𝜔)4
,5 (A) RMSD versus the field strength of the applied,

B1 field. (B) RMSD versus the population of the low populated state, E. (C) RMSD versus the overall

exchange rate, kex. (D) RMSD versus the number of points sampled in the input anti-phase CEST

profile.

6

Fig. S4. Schematic representation of the DNN(cs) neural network architecture used to determine

chemical shifts from the frequency-domain in-phase CEST profiles. A box represents a layer with

trainable parameters, that is, a tensor multiplication followed by an activation, whereas a circle

represents an elementwise operation. A box with ‘Conv, k = kernel_size’ refers to a one-dimensional

convolutional layer with kernel size kernel_size and a dilation rate of 1 (no dilation). The numbers

above the arrows show the size of the tensor being transferred. The operation, ‘Norm’ refers to a batch

normalisation layer, ‘MaxPool’ refers to a one-dimensional MaxPool layer, and ‘AveragePool’ refers

to an average pooling layer. A box with ‘σ’ denotes a linear layer with sigmoid(x) activation and a

circle with ‘σ’ refers to elementwise sigmoidal activation. Similarly, ‘R’ denotes a rectified linear

unit, x → (x + |x|)/2. The predictions follow a sigmoidal activation and fω,pred and cpred are therefore

between 0 and 1. All details are provided in Table S1 and in the source code.

7

Fig S5. Assessment of the predicted confidence, cpred, for two-site chemically exchanging systems, G

⇌	E, where random Gaussian noise was added with a standard deviation of 0.01 of the maximum

value of each anti-phase CEST profile. (A, B) For 100,000 random anti-phase CEST profiles the

predicted confidence of chemical shifts of nuclei from either ground (A) or low-populated (B) states

has been plotted against the difference in chemical shifts between the ground-state, δG, and the low-

populated state, δE, |Δδ|. (A) shows the predicted confidence for δG, whereas (B) shows the confidence

for δE. A clear trend is observed, where low confidence (large uncertainty) is mainly observed for

small chemical shifts differences, Δδ. For small Δδ the DNN occasionally predicts the chemical shift

of the ground state with lower confidence than the low-populated state. This is merely a reflection of

the fact that only one chemical shift can be confidently predicted. (C) Predicted chemical shift

differences, |Δδ|pred = |δG,pred – δE,pred| plotted against the true chemical shift differences, |Δδ|true = |δG,true

– δE,true|. The 100,000 points in the scatter plot have been coloured according to the confidence, cpred =

min(cpred(δE), cpred(δG)). For the small fraction of points with |Δδ|pred ≲ 0.1 and |Δδ|true up to

approximately 1.5 ppm, the anti-phase CEST profiles typically have small ‘dips’ close to the noise for

the low-populated state, which is generally caused by small kex and/or small pE. One such example is

shown in the inset, where B1 = 32 Hz, kex = 16 s-1, and pE = 2.4%. (D) Histogram showing the

distribution of differences between true chemical shift differences, |Δδ|true, and predicted chemical

shift differences, |Δδ|pred.

8

Fig S6. Quantitative assessment of sequential DNNs for the determination of chemical shifts from

anti-phase 1HN CEST profiles. 100,000 synthetic anti-phase 1HN CEST profiles reporting on a three-

site chemical exchange process,	E1 ⇌	G ⇌	E2, were generated, analysed via the sequential DNN

procedure described in the text, and the accuracy of predicted chemical shifts for ground (A,D), and

low-populated (E1: B,E; E2: C, F) states assessed. (A, B, C) show two-dimensional histograms for the

100,000 CEST profiles of the difference between predicted δpred, and true chemical shifts, δtrue. The

histogram is calculated with a cpred interval of 0.05 (see Fig 4 for details). An overlay is made with the

68.3% confidence level for the analysed CEST profiles as a function of cpred (black dashed line), as

well as the predicted uncertainty, σpred. For cpred > 0.4, the predicted uncertainty, σpred, agrees well with

the confidence levels obtained from the analysis of the 100,000 profiles. (D,E,F) show the

distributions of confidences obtained from the assessment. In cases where cpred values are close to 0

only a single dip is observed in CEST profiles.

9

Fig S7. Quantitative assessment of sequential DNNs with regards to the distribution of the expected

confidence, cpred, when increased Gaussian noise is added to the input anti-phase CEST profiles. The

100,000 synthetic anti-phase 1HN CEST profiles reporting on two-state chemical exchange were

generated as described in the main text. The top row represents the assessment presented in Fig 4,

where Gaussian noise with a standard deviation of 0.01 was added to the input anti-phase CEST

profiles. The anti-phase CEST profile shown as an inset in the right column is the same profile as that

shown in Fig 1A. In the second row, Gaussian noise with a standard deviation of 0.02 was added to

the input profiles, and in the bottom row Gaussian noise with a standard deviation of 0.04 was added.

Histograms in the left column report on the predicted confidences for the ground-state chemical shifts,

and the histograms in the right column report on the confidences for the predicted chemical shifts of

the low-populated state, E.

10

Table S1: Description of the layers used in the Neural Networks DNNTR and DNNCS:

Layer symbol Operations

T
 A linear layer with hyperbolic tangent, tanh(x), activation function and
bias. The layer transforms, in a linear manner, an input vector x into an
output vector y. This layer contains a parameter-tensor, A, and a
parameter-vector, b. Specifically, y = {tanh(z1), tanh(z2), …, tanh(zn)},
where z = {z1, z2, …, zn} and z = Ax + b. Training the neural network
involves optimisation of all the parameters of A and b.

T

 An elementwise operation, x → tanh(x). The layer transforms an input
vector x into an output vector y, specifically, y = {tanh(x1), tanh(x2), …,
tanh(xn)}. There are no parameters to be optimised.

σ

 A linear layer with sigmoidal activation and bias. This layer is similar to
the linear ‘T’ layer described above, only difference is that a sigmoidal
function is used, φ(x) = (1+exp(-x))-1, instead of the hyperbolic tangent.

σ

 An elementwise operation, x → φ(x), where φ(x) = (1+exp(-x))-1. The
layer transforms an input vector x into an output vector y, specifically, y =
{ φ(x1), φ(x2), …, φ(xn)}. There are no parameters to be optimised.

Conv

 A one-dimensional convolutional layer, which contains a parameter-
kernel, k = {k1, k2, … } of size kernel_size and a bias b. For an input vector
x of size n, the input vector is first zero-filled with kernel_size – 1 zeros.
Either (i, DNNTR) all zeros added to the end of the input or (ii, DNNCS)
zeros will be added to both the beginning and end of the input vector and if
an odd number of zeros are required one additional zero is added to the
end. After zero-filling, the output vector, y, is given by y = {𝑏 + ∑𝑘!𝑥!,
𝑏 + ∑𝑘!𝑥!"#, … }. Training the neural network involves optimisation of
all the parameters of k and b.
 As an example, consider the following vector x = {0.5, 0.5, 0.9, 2.0, 0.5,
2.0, 0.9, 0.5, 0.5}, whose elements when plotted as intensities give a ‘low
resolution’ doublet, flanked by baseline. For a kernel k = {0, 1, 1} and a
bias b= -1 then the output y will be calculated by first adding kernel_size –
1 = 2 zeros to {0.5, 0.5, 0.9, 2.0, 0.5, 2.0, 0.9, 0.5, 0.5, 0.0, 0.0} → x. The
convolution is now given by:
y = { 0*0.5 + 1*0.5 + 1*0.9 – 1,
 0*0.5 + 1*0.9 + 1*2.0 – 1,
 0*0.9 + 1*2.0 + 1*0.5 – 1,
 0*2.0 + 1*0.5 + 1*2.0 – 1,
 0*0.5 + 1*2.0 + 1*0.9 – 1,
 0*2.0 + 1*0.9 + 1*0.5 – 1,
 0*0.9 + 1*0.5 + 1*0.5 – 1,
 0*0.5 + 1*0.5 + 1*0.0 – 1,
 0*0.5 + 1*0.0 + 1*0.0 – 1} = {0.4, 1.9, 1.5, 1.5, 1.9, 0.4, 0, -0.5, -1}.

11

Dilated
Conv

 A one-dimensional dilated convolutional layer, which contains a
parameter-kernel, k = {k1, k2, … } of size kernel_size and a bias b. The
dilation rate is d. For an input vector x of size n, the input vector is first
zero-filled with d×(kernel_size – 1) zeros. Subsequently the output vector,
y, is given by y = {𝑏 + ∑𝑘!𝑥#"$×(!'#), 𝑏 + ∑𝑘!𝑥)"$×(!'#), … }. Training
the neural network involves optimisation of all the parameters of k and b.
 As an example, consider the example above with x = {0.5, 0.5, 0.9, 2.0,
0.5, 2.0, 0.9, 0.5, 0.5}. For a dilation rate = 2, a kernel k = {0, 1, 1}, a bias
b = -1, then the output y will be calculated by first adding 2*(3 – 1) = 4
zeros to give {0.5, 0.5, 0.9, 2.0, 0.5, 2.0, 0.9, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0} →
x. The convolution is now given by:
y = { 0*0.5 + 1*0.9 + 1*0.5 – 1,
 0*0.5 + 1*2.0 + 1*2.0 – 1,
 0*0.9 + 1*0.5 + 1*0.9 – 1,
 0*2.0 + 1*2.0 + 1*0.5 – 1,
 0*0.5 + 1*0.9 + 1*0.5 – 1,
 0*2.0 + 1*0.5 + 1*0.0 – 1,
 0*0.9 + 1*0.5 + 1*0.0 – 1,
 0*0.5 + 1*0.0 + 1*0.0 – 1,
 0*0.5 + 1*0.0 + 1*0.0 – 1}= {0.4, 3, 0.4, 1.5, 0.4, -0.5, -0.5, -1, -1}

 The convolutional layers used for DNNTR and DNNCS have several
output ‘filters’, meaning that the convolutional layer effectively contains
multiple kernels of the same size (and one b per kernel), thereby generating
multiple output vectors y. More specifically, consider an input, x,
consisting of I input filters and a length L. This input, x, can be described
by a matrix of size {L,I} and its elements denoted x l,i. Now consider the
kernel k, with a kernel size kernel_size. If we have J output filters, then the
total kernel used for the one-dimensional convolution can be described
with a tensor of size {kernel_size,I,J}. After zero-filling of the input with
kernel_size -1 zeros, and with a dilation rate of 1 (so that the input x
consists of L+kernel_size-1 elements), the output of size {L,J} is given by
𝐲*,, =	∑ ∑ 𝐱-"*'#,! × 𝐤-,!,,-! .

R

 A linear layer with rectified linear activation and bias. This layer is
similar to the linear ‘T’ layer described above, only difference is that a
rectified linear unit function is used, φ(x) = (x + |x|)/2, instead of the
hyperbolic tangent.

R

 An elementwise operation, x → φ(x), where φ(x) = (x + |x|)/2. The layer
transforms an input vector x into an output vector y, specifically, y =
{ φ(x1), φ(x2), …, φ(xn)}. There are no parameters to be optimised.

AveragePool

 An average pooling layer along one axis, with a pool size of 2 and a
stride of 2. For an input vector x = {x1, x2, …, xn} the output vector y is
given by 0.5{x1+x2, x3+x4, …}. There are no parameters to be optimised.
 As an example, consider the vector x = {0.5, 0.5, 0.9, 2.0, 0.5, 2.0, 0.9,
0.5, 0.5}, then the average pooling with pool size of 2 and stride 2 will
give:
y = { (0.5+0.5)/2,

12

 (0.9+2.0)/2,
 (0.5+2.0)/2,
 (0.9+0.5)/2} = {0.5, 1.45, 1.25, 0.7}
Note that the last number of x is ignored here because the pooling is not
valid.

GlobalAverage

 A global averaging along one axis. For an input vector x = {x1, x2, …,
xn} the output scalar is average(x1, x2, x3, …}. There are no parameters to
be optimised.

MaxPool
 A maximum pooling layer with a pool size of 3 and a stride of 2. For an
input vector x = {x1, x2, …, xn} the output vector y is given by {max(x1, x2,
x3), max(x3, x4, x5), …}. There are no parameters to be optimised.
 As an example, consider the vector x = {0.5, 0.5, 0.9, 2.0, 0.5, 2.0, 0.9,
0.5, 0.5}, then the maximum pooling with pool size of 3 and stride 2 will
give:
y = { max(0.5, 0.5, 0.9),
 max(0.9, 2.0, 0.5),
 max(0.5, 2.0, 0.9),
 max(0.9, 0.5, 0.5)} = {0.9, 2.0, 2.0, 0.9}
As for the averaging pooling, only valid outputs are calculated. Thus, when
the size of the input vector, length(x), is odd, the output for this layer has a
size of (length(x)-1)/2, while when length(x) is even, the output for this
layer has a size of (length(x)-2)/2. Thus, in the present case length(x) = 9
and the size of the output is (length(x)-1)/2 = 4.

Norm

 A batch-normalisation layer, which maintains the mean output close to 0
and the output standard deviation close to 1. For each channel of the input
the normalisation is performed along the mini-batch dimension, x.
Specifically for each channel the output y is y = γ (x – mean(x))/σ(x) + b,
where σ(x) is the standard deviation of x. This layer has two parameters to
be optimised per channel of the input, γ and b.

+
 An elementwise addition layer. For two input vectors, x and y, of
identical size, the output vector, z, is calculated as: z = {z1, z2, …, zn} =
{x1+y1, x2+y2, …, xn+yn}.

×

 An elementwise multiplication layer. For two input vectors, x and y, of
identical size, the output vector, z, is calculated as: z = {z1, z2, …, zn} =
{x1*y1, x2*y2, …, xn*yn}.

13

Python Code for Building DDNTR
NP=65
FilterFactor=32
kernel=(6,1)

def build_model():
 #
 import tensorflow as tf
 #
 def dfh_gelu(x):
 return tf.add(tf.tanh(x), tf.math.scalar_mul(0.02,x))
 def dfh_sigm(x):
 return tf.add(tf.math.sigmoid(x), tf.math.scalar_mul(0.02,x))

 tf.keras.utils.get_custom_objects().update({'dfh_gelu': tf.keras.layers.Activation(dfh_gelu), 'dfh_sigm':
tf.keras.layers.Activation(dfh_sigm)})

 time_0 = tf.keras.layers.Input(shape=(NP*2,), name='Input_time')
 ipap_0 = tf.keras.layers.Input(shape=(NP*2,), name='Input_ipap')

 #
 xi = tf.expand_dims(ipap_0, axis=-1) # (Batch, [real,imag])
 hi = tf.expand_dims(time_0, axis=-1)

 def lstm_module(filters):
 def inside(x):
 # x[0]: main track
 # x[1]: memory track

 hidden_0_1 = tf.keras.layers.Dense(filters, activation=dfh_gelu, use_bias=True)(x[1])

 hidden_1_1 = tf.keras.layers.Dense(filters, activation=dfh_sigm)(x[0])
 hidden_1_2 = tf.keras.layers.Dense(filters, activation=dfh_sigm)(x[0])
 hidden_1_3 = tf.keras.layers.Dense(filters, activation=dfh_gelu)(x[0])
 hidden_1_4 = tf.keras.layers.Dense(filters, activation=dfh_sigm)(x[0])

 hidden_2_1 = tf.keras.layers.multiply([hidden_1_1,hidden_0_1])
 hidden_2_2 = tf.keras.layers.multiply([hidden_1_2,hidden_1_3])
 #
 hidden_3_1 = tf.keras.layers.add([hidden_2_1, hidden_2_2])
 #
 hidden_4_1 = tf.keras.layers.Activation(activation=dfh_gelu)(hidden_3_1)
 hidden_4_2 = tf.keras.layers.multiply([hidden_4_1,hidden_1_4])
 #
 return hidden_4_2, hidden_3_1
 return inside

 def conv_layer(x_shp=4, y_shp=4, kernel=11, name=''):
 def inside(x):

 x1 = tf.expand_dims(x, axis=-2)

 x2t = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[1,1], activation=dfh_gelu,
padding='valid', name='conv1d_x2t'+name)(x1)
 x2s = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[1,1], activation=dfh_sigm,
padding='valid', name='conv1d_x2s'+name)(x1)
 x2 = tf.keras.layers.Conv2DTranspose(FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1],
padding='valid')(tf.math.multiply(x2t,x2s))

 x3i = tf.keras.layers.ZeroPadding2D(((0,1*(kernel[0]-1)),(0,0)))(x2)
 x3t = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[2,1], activation=dfh_gelu,
padding='valid', name='conv1d_x3t'+name)(x3i)
 x3s = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[2,1], activation=dfh_sigm,
padding='valid', name='conv1d_x3s'+name)(x3i)
 x3 = tf.keras.layers.Conv2DTranspose(FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1],
padding='valid')(tf.math.multiply(x3t, x3s))
 #
 x4i = tf.keras.layers.ZeroPadding2D(((0,2*(kernel[0]-1)),(0,0)))(x3)
 x4t = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[3,1], activation=dfh_gelu,
padding='valid', name='conv1d_x4t'+name)(x4i)
 x4s = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[3,1], activation=dfh_sigm,
padding='valid', name='conv1d_x4s'+name)(x4i)
 x4 = tf.keras.layers.Conv2DTranspose(FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1],
padding='valid')(tf.math.multiply(x4t, x4s))

 x5i = tf.keras.layers.ZeroPadding2D(((0,3*(kernel[0]-1)),(0,0)))(x4)
 x5t = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[4,1], activation=dfh_gelu,
padding='valid', name='conv1d_x5t'+name)(x5i)
 x5s = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[4,1], activation=dfh_sigm,
padding='valid', name='conv1d_x5s'+name)(x5i)
 x5 = tf.keras.layers.Conv2DTranspose(FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1],
padding='valid')(tf.math.multiply(x5t,x5s))

14

 x6i = tf.keras.layers.ZeroPadding2D(((0,5*(kernel[0]-1)),(0,0)))(x5)
 x6t = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[6,1],activation=dfh_gelu, padding='valid',
name='conv1d_x6t'+name)(x6i)
 x6s = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[6,1],activation=dfh_sigm,
padding='valid', name='conv1d_x6s'+name)(x6i)
 x6 = tf.keras.layers.Conv2DTranspose(FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1],
padding='valid')(tf.math.multiply(x6t,x6s))

 x7i = tf.keras.layers.ZeroPadding2D(((0,7*(kernel[0]-1)),(0,0)))(x6)
 x7t = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[8,1],activation=dfh_gelu, padding='valid',
name='conv1d_x7t'+name)(x7i)
 x7s = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[8,1],activation=dfh_sigm,
padding='valid', name='conv1d_x7s'+name)(x7i)
 x7 = tf.keras.layers.Conv2DTranspose(FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1],
padding='valid')(tf.math.multiply(x7t,x7s))
 #
 x8i = tf.keras.layers.ZeroPadding2D(((0,9*(kernel[0]-1)),(0,0)))(x7)
 x8t = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[10,1],activation=dfh_gelu,
padding='valid', name='conv1d_x8t'+name)(x8i)
 x8s = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[10,1],activation=dfh_sigm,
padding='valid', name='conv1d_x8s'+name)(x8i)
 x8 = tf.keras.layers.Conv2DTranspose(FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1],
padding='valid')(tf.math.multiply(x8t,x8s))

 x9i = tf.keras.layers.ZeroPadding2D(((0,11*(kernel[0]-1)),(0,0)))(x8)
 x9t = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[12,1],activation=dfh_gelu,
padding='valid', name='conv1d_x9t'+name)(x9i)
 x9s = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[12,1],activation=dfh_sigm,
padding='valid', name='conv1d_x9s'+name)(x9i)
 x9 = tf.keras.layers.Conv2DTranspose(FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1],
padding='valid')(tf.math.multiply(x9t,x9s))

 x10i = tf.keras.layers.ZeroPadding2D(((0,13*(kernel[0]-1)),(0,0)))(x9)
 x10t = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[14,1],activation=dfh_gelu,
padding='valid', name='conv1d_x10t'+name)(x10i)
 x10s = tf.keras.layers.Conv2D(FilterFactor, kernel_size=kernel, dilation_rate=[14,1],activation=dfh_sigm,
padding='valid', name='conv1d_x10s'+name)(x10i)
 x10 = tf.keras.layers.Conv2DTranspose(FilterFactor*2, kernel_size=kernel, dilation_rate=[1,1],
padding='valid')(tf.math.multiply(x10t,x10s))

 x15 = tf.keras.layers.Add()([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10])

 return tf.squeeze(x15, axis=2)

 return inside

 def lstm_layer(x_shp=4, y_shp=4, kernel=11, name=''):
 def inside(x):

 x0 = conv_layer(x_shp=x_shp, y_shp=y_shp, kernel=kernel, name='x_'+name)(x[0])
 h0 = conv_layer(x_shp=x_shp, y_shp=y_shp, kernel=kernel, name='h_'+name)(x[1])
 #
 x00 = tf.keras.layers.Permute((2,1))(x0)
 h00 = tf.keras.layers.Permute((2,1))(h0)
 #
 x11, h11 = lstm_module(x_shp)([x00, h00])
 #
 x1 = tf.keras.layers.Permute((2,1))(x11)
 h1 = tf.keras.layers.Permute((2,1))(h11)
 #
 # final transformation
 x0p = tf.keras.layers.add([x0, \
 tf.keras.layers.multiply([\
 tf.keras.layers.Dense(FilterFactor*2, activation=dfh_gelu)(x[1]), \
 tf.keras.layers.Dense(FilterFactor*2, activation=dfh_gelu)(x1) \
]) \
])
 #
 h0p = tf.keras.layers.add([h0, \
 tf.keras.layers.multiply([\
 tf.keras.layers.Dense(FilterFactor*2, activation=dfh_gelu)(x[0]), \
 tf.keras.layers.Dense(FilterFactor*2, activation=dfh_gelu)(h1) \
]) \
])

 return x0p,h0p
 return inside

 x1,h1 = lstm_layer(x_shp=2*NP,y_shp=1, kernel=kernel, name='_l1')([xi,hi])
 x2,h2 = lstm_layer(x_shp=2*NP,y_shp=1, kernel=kernel, name='_l2')([x1,h1])
 x3,h3 = lstm_layer(x_shp=2*NP,y_shp=1, kernel=kernel, name='_l3')([x2,h2])
 x4,h4 = lstm_layer(x_shp=2*NP,y_shp=1, kernel=kernel, name='_l4')([x3,h3])
 x5,h5 = lstm_layer(x_shp=2*NP,y_shp=1, kernel=kernel, name='_l5')([x4,h4])
 #
 xhs = tf.keras.layers.concatenate([x1,x2,x3,x4,x5,h1,h2,h3,h4,h5], axis=2)

15

 xhf = tf.keras.layers.Dense(1, activation=dfh_gelu)(xhs)
 #
 final_rshp = tf.squeeze(tf.keras.layers.Activation('linear', dtype='float32')(xhf), axis=-1)
 final_rshp = tf.math.scalar_mul(tf.constant(NP, dtype=tf.dtypes.float32), final_rshp)
 #
 final = tf.keras.models.Model(inputs=(time_0, ipap_0), outputs=final_rshp)
 #
 final.compile(optimizer=tf.keras.optimizers.Adam(),
 loss='mse',
 metrics=['mse','mae'])
 return final

16

Python Code for Building DDNCS

def build_model_denseConv(filters=16):
 #
 import tensorflow as tf
 #

 def dense_block(x, filty, num_layers):
 stack = []
 x = alt_conv(x, filty)
 stack.append(x)

 for k in range(num_layers-1):
 if k>0:
 x = alt_conv(keras.layers.Concatenate()(stack), filty)
 else:
 x = alt_conv(x, filty)

 stack.append(x)

 return keras.layers.Concatenate()(stack)

 def alt_conv(x, filty):
 x = keras.layers.BatchNormalization()(x)
 x = keras.layers.ReLU()(x)
 x = keras.layers.Conv1D(4*filty, kernel_size=1, strides=1, padding = 'same')(x)

 x = keras.layers.BatchNormalization()(x)
 x = keras.layers.ReLU()(x)
 x = keras.layers.Conv1D(filty, kernel_size=3, strides=1, padding = 'same')(x)
 return x

 def transition(x):
 x = keras.layers.BatchNormalization()(x)
 x = keras.layers.ReLU()(x)
 x = keras.layers.AveragePooling1D(pool_size=2, strides = 2)(x)

 return x

 input = keras.layers.Input(shape=[128,1])
 x = input
 x = keras.layers.Conv1D(filters, kernel_size=7, strides=1, padding = 'same')(x)
 x = keras.layers.MaxPool1D(pool_size=3, strides=2)(x)

 x = dense_block(x, filters, 6)
 x = transition(x)

 x = dense_block(x, filters, 12)
 x = transition(x)

 x = dense_block(x, filters, 32)
 x = transition(x)

 x = dense_block(x, filters, 32)
 x = keras.layers.BatchNormalization()(x)
 x = keras.layers.ReLU()(x)
 x = keras.layers.GlobalAveragePooling1D()(x)
 x = keras.layers.Dense(256, activation="relu")(x)
 fin_dens = keras.layers.Dense(6, activation="sigmoid")(x)
 fin_dens_reshape = keras.layers.Reshape((3, 2), input_shape=(6,))(fin_dens)
 #
 model = keras.Model(inputs=[input], outputs=[fin_dens_reshape])
 #
 model.compile(loss=unique_pairs_loss,
 optimizer=keras.optimizers.Adam(lr=0.33e-4),
 metrics=[unique_pairs_loss, conf_loss]
)
 #
 return model

