Journal of Biomolecular NMR (2022) 76:75-86
https://doi.org/10.1007/5s10858-022-00395-z

ARTICLE q

Check for
updates

Towards autonomous analysis of chemical exchange saturation
transfer experiments using deep neural networks

Gogulan Karunanithy' - Tairan Yuwen? - Lewis E. Kay*>*>% . D, Flemming Hansen'

Received: 23 December 2021 / Accepted: 5 May 2022 / Published online: 27 May 2022
© The Author(s) 2022

Abstract

Macromolecules often exchange between functional states on timescales that can be accessed with NMR spectroscopy and
many NMR tools have been developed to characterise the kinetics and thermodynamics of the exchange processes, as well as
the structure of the conformers that are involved. However, analysis of the NMR data that report on exchanging macromol-
ecules often hinges on complex least-squares fitting procedures as well as human experience and intuition, which, in some
cases, limits the widespread use of the methods. The applications of deep neural networks (DNN5s) and artificial intelligence
have increased significantly in the sciences, and recently, specifically, within the field of biomolecular NMR, where DNN’s
are now available for tasks such as the reconstruction of sparsely sampled spectra, peak picking, and virtual decoupling.
Here we present a DNN for the analysis of chemical exchange saturation transfer (CEST) data reporting on two- or three-site
chemical exchange involving sparse state lifetimes of between approximately 3—60 ms, the range most frequently observed
via experiment. The work presented here focuses on the '"H CEST class of methods that are further complicated, in relation
to applications to other nuclei, by anti-phase features. The developed DNNs accurately predict the chemical shifts of nuclei in
the exchanging species directly from anti-phase "HN CEST profiles, along with an uncertainty associated with the predictions.
The performance of the DNN was quantitatively assessed using both synthetic and experimental anti-phase CEST profiles.
The assessments show that the DNN accurately determines chemical shifts and their associated uncertainties. The DNNs
developed here do not contain any parameters for the end-user to adjust and the method therefore allows for autonomous
analysis of complex NMR data that report on conformational exchange.
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Many functional aspects of a macromolecule can be under-
stood from its time-averaged three-dimensional structure.
However, often the functionality of these molecules depends
on their ability to exchange between different conformational
states. Thus, quantifying the interconversion between these
states is an important first step towards understanding how
these biomolecules work (Yang et al. 2003; Karplus and
Kuriyan 2005; Boehr et al. 2006; Henzler-Wildman and
Kern 2007; Faust et al. 2020; Xie et al. 2020; Wurm et al.
2021). When conformational exchange is present, there is
often one major populated state, the ground state, and a set
of transiently low-populated states that, despite their low
populations and short lifetimes, often play crucial roles for
function. Several NMR techniques are now available to
characterise reaction dynamics and transiently populated
states at atomic resolution, including, chemical exchange
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saturation transfer (CEST) (Ward et al. 2000; Zhou and
Zijl 2006; Vallurupalli et al. 2012), dark-state exchange
saturation transfer (DEST) (Bertini et al. 1999; Hansen and
Led 2006; Fawzi et al. 2011), Carr-Purcell-Meiboom-Gill
(CPMG) (Meiboom and Gill 1958; Loria et al. 1999; Toll-
inger et al. 2001) relaxation dispersion, and relaxation in the
rotating frame (R, R,,) (Palmer and Massi 2006; Hansen
et al. 2009; Chao and Byrd 2016). CEST-based methods,
which report on conformational exchange involving sparse
states with lifetimes ranging from approximately 3—-60 ms,
have expanded tremendously over the last decade and have
provided invaluable insights into the function of macromol-
ecules (Vallurupalli et al. 2017). However, although several
tools are available for the analysis of NMR data reporting on
conformational exchange, challenges do exist, particularly
when the exchange deviates from a simple two-state model
(Neudecker et al. 2006). For '"H CEST methods reporting
on the exchange of amide-protons (Yuwen et al. 2017a) and
methyl-protons (Yuwen et al. 2017b) analyses are further
complicated by anti-phase features caused by the require-
ment to eliminate "H-"H cross-relaxation effects, leading to
broad lineshapes, with resolution significantly more limited
than for ‘typical’ CEST profiles comprised of absorptive-
like dips.

Deep learning and deep neural networks (DNNs) have
led to huge advances in many fields of science, including
computer vision and natural language processing, and the
methodology is now a crucial component of many every-
day technologies (LeCun et al. 2015). In supervised deep
learning, DNNSs are trained to map an input to a desired out-
put, and once trained, these networks can perform analyses
autonomously. Deep learning is particularly successful at
extracting features in complex data (Goodfellow et al. 2016).
It has been used for several years within the field of clinical
magnetic resonance imaging (MRI) and some of the tools
have already been approved by the FDA (Chaudhari et al.
2021) for image enhancement and classification. Within bio-
molecular NMR there has been a surge in applications of
DNNss over the last couple of years, and networks are now
available for the reconstruction of sparsely sampled spectra
(Hansen 2019; Luo et al. 2020; Qu et al. 2020; Karunanithy
and Hansen 2021), peak picking (Klukowski et al. 2018),
estimating initial fitting parameters (Beckwith et al. 2021),
and virtual decoupling (Karunanithy et al. 2021).

A key hurdle with many machine learning applications
is that training robust models requires a large amount of
curated training data. The in-depth understanding of the
theory behind biomolecular NMR and the ability to simulate
even complex NMR experiments means that the required
amount of realistic training data can be generated syn-
thetically. Importantly, it has now become clear that DNNs
trained on fully synthetic data show robust performance on
experimental data (Hansen 2019; Karunanithy and Hansen

@ Springer

2021; Karunanithy et al. 2021), which allows for sophis-
ticated DNNs to be developed for the transformation and
analysis of NMR spectra.

Overall, there is enormous potential for the development
of deep learning approaches for the general analysis of NMR
data and in particular for experiments reporting on confor-
mational exchange. Below we have designed and trained
DNN s to extract chemical shifts from the notably complex
amide-proton anti-phase CEST experiment. The DNNs were
trained solely on synthetically generated CEST profiles and
are able to extract accurate chemical shifts of exchanging
species as well as their uncertainties, thereby demonstrating
that NMR data reporting on conformational exchange can be
analysed autonomously using deep neural networks.

Methods
Deep neural network architectures

Figure S2 shows the architecture for the DNN used to
transform time-domain anti-phase CEST profiles into time-
domain in-phase CEST profiles, DNNy. This architecture
is built from two modules, a module akin to a block in the
FID-Net architecture (Karunanithy and Hansen 2021) and
a modified LSTM module (Hansen 2019). The reason for
this choice was that the main objective for the DNN is
to ‘decouple’ anti-phase CEST profiles, which we have
recently shown can be accomplished by the FID-Net archi-
tecture (Karunanithy and Hansen 2021). The pyTHON code
for generating the model architecture in Tensorflow/Keras
is provided in Supporting Material and can be downloaded
from GitHub. The input to the DNN consists of two vec-
tors of size 2 X 65 =130. The first vector, cest,p(#) =, holds
the zero-filled real Fourier transform (real and imaginary
components) of the antiphase CEST profile and the second
vector holds the time-points associated with the first vector,
t,- The output of the network is the in-phase CEST profile,
sampled at 128 offsets. The network contained 3,782,423
trainable parameters.

The second DNN, DNN(g, used to determine chemical
shifts and their confidences was built using a densely con-
nected convolutional neural network architecture (Huang
et al. 2016), Fig. S4. The input for the network is the output
from the first transformation described above, that is, fre-
quency domain data describing the in-phase CEST profile,
cest;p(w), a vector of 128 real points. In its current form,
the network detects a maximum of three chemical shifts
as well as their confidences and the output of the network
is therefore a 3 X2 tensor, whose elements comprise three
chemical shifts and their confidence values. Overall, the net-
work has 1,591,526 trainable parameters. The pyTHON code
for generating the model in Tensorflow/Keras is provided
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in Supporting Material and can also be downloaded from
GitHub.

Training the deep neural networks

The first DNN, DNNy, was trained on 15X 100 anti-phase
CEST profiles over 1500 epochs, where the range of training
data is detailed in Table 1. An epoch refers to a single cycle
of training of the neural network with training data. The
training data was generated on-the-fly using code written in
PYTHON and using functions from the Tensorflow and numpy
libraries. To obtain smooth simulated CEST profiles, similar
to those generated by experiment, previous simulations have
used a distribution of B, fields or other dephasing methods
(Vallurupalli et al. 2012). Here the dephasing was achieved
by only retaining the eigenvectors of the Liouvillian cor-
responding to real eigenvalues in the propagator. Thus, if
L is the matrix describing the Liouvillian, under which the
spin-system evolves during the CEST period, then the eigen-
values and eigenvectors of L are initially found: L A=A
D, where A is a matrix of eigenvectors and D is a diago-
nal matrix of eigenvalues. The submatrix of D that holds
the real eigenvalues is denoted D, and the matrix holding
the eigenvectors corresponding to the real eigenvalues is
denoted A.. Propagation of the spin-system is carried out
with the propagator, A, exp(— T, D,) A™' .. As an example,
for a simple Liouvillian, L, represented by a 3 X 3 matrix in
the basis set of the three product operators, 1, Iy, and J, there
is typically only one real eigenvalue. After an eigendecom-
position of L, the matrix holding the eigenvectors, A, and
the diagonal matrix holding the eigenvalues, D, are 3 x3

matrices. The submatrix A, has dimensions 3x1, D, is a

Table 1 Parameters used to generate training data

1 x 1 matrix, and A™'_ is a 1 X 3 matrix. Thus, A, D,, A~
produces a 3 X 3 matrix that is the projection of the original
Liouvillian onto the space spanned by the real eigensystem
and A, exp(—T,,D,.) A, is the propagator corresponding
only to the real eigensystem. For the code written with the
Tensorflow library functions, where sizes of matrices should
remain constant, the dephasing is achieved by multiplying
any eigenvalue that has an imaginary part larger than 10~ by
10°, which means that evolutions caused by non-real eigen-
values are eliminated within nanoseconds.

The anti-phase CEST profiles were then obtained by
propagating the Liouvillian over the first INEPT and the
CEST element in the anti-phase 'HY pulse sequence. For
each anti-phase CEST profile an in-phase CEST profile was
also generated by setting 'J;;, =0 Hz and integrating the
Liouvillian over the CEST element (Vallurupalli et al. 2012).
The stochastic ADAM (Kingma and Ba 2014) optimiser was
employed with standard parameters and an adaptive learn-
ing rate calculated as 0.0004 X (Lg,, + Luncer)?’ * (final learn-
ing rate of 107). A batch size of 256 was used throughout
the training and random gaussian noise was added with a
standard deviation of 0.01 of the maximum value of each
anti-phase CEST profile.

After training the DNNy network the DNNg network
was trained. The input data for training the DNNg net-
work was obtained from output of the trained DNN net-
work. Random gaussian noise with a standard deviation
between 0.001 and 0.04 of the maximum value of each
anti-phase CEST profile was added to anti-phase CEST
profiles before these were transformed with the DNN»
network. A total of 1.5x 107 CEST profiles were used for
training, which was done over 110 epochs, with a batch

Experimental parameters
By

B,

Range of offset points
Sampled points
Inter-scan delay

CEST delay, T,

Parameters reporting on the spin system

Rotation correlation, Ty, used to calculate all relaxation rates of the ground state

"H-5N scalar coupling, Ty
Micro-second exchange contribution added to all states, R,

R, y(E)) =R, 4(G) and R, y(E,) — R, 4(G)
Chemical shifts 0g, wg;, and og,
Chemical exchange

Probability of three-site exchange

Kex 6> Kex GE1» Kex GE2

Pe: PE1> PE2

{14.1T,164 T, 18.8 T, 21.1 T, 23.5 T}
15-50 Hz

3.4 ppm

50-128

05s

04s

3-20 ns

—-91to—95Hz

Absolute value of a normal distribution:
p=1.0s"16=2.0s"

Normal distribution: p=0.0 57}, 6=2.0 57"

Uniform distribution over the full sweep width

25%
10-300 s~
0.01-0.15
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size of 128. The stochastic ADAM (Kingma and Ba 2014)
optimiser with standard parameters and a learning rate of
3.3%x 107" was used.

Initial training was carried out using a desktop com-
puter (Intel Core 17-6900 K, 3.2 GHz, 64 GB RAM),
equipped with an NVIDIA GeForce GTX 1080 TI GPU
graphics card and subsequent training carried out using
the CAMP cluster (NVIDIA Tesla V100 GPU). Although
the training of the two DNNs has benefitted from access
to nodes with GPUs, using the trained DNNs to trans-
form new (experimental) data does not require high-end
computational nodes or GPUs. As an example, the full
set of ca. 140 'H anti-phase CEST profiles from L99A T4
Lysozyme, Fig. 5, can be transformed with both DNNx
and DNN_ in less than 2 min on a standard laptop using
only the CPU (Intel i17-6700 CPU).

Experimental amide-proton CEST data

A 1.5 mM U-[N, 2H] L99A T4L sample produced as
described previously (Bouvignies et al. 2011) and dis-
solved in 50 mM sodium phosphate, 25 mM NaCl, 2 mM
EDTA, 2 mM NaNj;, pH 5.5, 90%H,0/10%D,0 was used
to record the anti-phase 'HN CEST experiments. L99A
T4L anti-phase '"HN CEST experiments were performed
as described previously (Yuwen et al. 2017a). Briefly, the
experiments were measured on a 800 MHz Bruker spec-
trometer equipped with an x, y, z-gradient cryogenically
cooled probe. 'HN-CEST measurements were performed
with a B, field of 30.5 Hz at 282 K using a CEST delay
of T, =400 ms. A range of 'H offsets on a regular grid
from 6.5 to 9.5 ppm was used, with step sizes of 30 Hz.
An additional reference 2D dataset was obtained by set-
ting the B, offset to — 12 kHz.

A 1.35 mM sample of [U-N,’H; 11681-13CHD2; Leu,
Val-'>*CHD,/"*CHD,; Met-'*CHD,] G48A Fyn SH3
domain was prepared as described previously (Yuwen
et al. 2017a). The sample was dissolved in 50 mM sodium
phosphate, 0.2 mM EDTA, 0.05% NaN,, pH 7.0, 90%
H,0/10% D,0. 'HN CEST experiments were measured
for the G48A Fyn SH3 domain using a 600 MHz Bruker
spectrometer at 285 K (x, y, z-gradient cryogenically
cooled probe). The '"HN CEST datasets were recorded as
described previously (Yuwen et al. 2017a); specifically,
a pair of datasets was recorded using B fields of 26.7 Hz
and 42.0 Hz. A CEST delay of T,, =400 ms was used
and B, offsets between 5.5 and 10.5 ppm with step sizes
of 25 Hz (B,=26.7 Hz) or 40 Hz (B, = 42 Hz) were
recorded. In addition, a 2D reference dataset was obtained
with a B, offset of — 12 kHz that is equivalent to setting
B,=0Hz.

@ Springer

Results and discussion

Chemical exchange saturation transfer profiles are nor-
mally visualised and analysed as, I(®gc )1y, Where
I 1s the intensity observed for a given site when a
weak radio-frequency pulse (B)) is applied at a frequency
offse» ald Iy 1s the corresponding intensity with no
B, pulse applied. A feature of standard CEST profiles is
that they resemble inverted one-dimensional NMR spec-
tra, where the ‘dips’ are centered at the chemical shifts
of the exchanging species. Thus, the related CEST pro-
file, max(1/1,) — 1/1,, resembles a simple NMR spectrum
and its real Fourier transform therefore resembles an FID.
Analysis of the CEST profiles with DNNs shown below
first involved transformation of the data into the time
domain, through a real Fourier transform, Fig. 1A and
B. It should be noted that for a real Fourier transform, or
equivalently a discrete Fourier transform of pure real data
(N data points), the output is Hermitian-symmetric and
approximately half [N/2 —1 for even N and (N —1)/2 for
odd N] of the points are therefore redundant, see Support-
ing Material and Fig. S1.

To show the strength of the developed DNNs for the
analysis of CEST data, we consider the amide-proton
anti-phase CEST (Yuwen et al. 2017a), whose profiles are
complicated relative to those generated by other CEST
experiments since the ‘dips’ are anti-phase in nature (i.e.,
multiplet components from the scalar coupling between
one-bond 'H-X spins are of opposite phase). These CEST
profiles are challenging to analyse primarily because the
chemical shifts may not be easily accessible directly from
the profiles. To facilitate the analysis of amide-proton
CEST profiles the overall process is divided into two tasks,
each with their own optimal DNN. The first DNN, DNN,
transforms each anti-phase CEST profile into a ‘classical’
profile, where the doublet nature of the dips are elimi-
nated, thereby improving resolution, and also upsamples
the profile to a fixed number of points in the CEST dimen-
sion. The second DNN, DNNg, then determines the 'H
chemical shifts for each of the exchanging species and an
associated confidence in the shift values.

of w

A deep neural network for the transformation
of amide-proton CEST profiles

It was recently shown how each of the hidden layers of
a simple DNN can be mapped to specific mathematical
transformations (Amey et al. 2021). Such an approach is
naturally highly attractive in order to design DNNs for new
challenges and to understand their strengths and weak-
nesses. However, with the large size of recent networks
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Fig. 1 Transformation of an amide-proton CEST profile from anti-
phase to in-phase. Initially the input anti-phase CEST profile (A) is
transformed with a real Fourier transform to give the time-domain
CEST profile, followed by zero-filling (an additional 17 complex
points) to generate a time-domain profile of 65 complex points (B),
independent of the size of the original CEST profile. The DNN; net-

developed to analyse and transform NMR data, our focus
here is on employing architectures that have been shown
recently to work well for related tasks. We have previ-
ously developed DNNs using the FID-Net architecture
(Karunanithy and Hansen 2021) to decouple and analyse
NMR spectra (Karunanithy and Hansen 2021; Karunanithy
et al. 2021) by using FIDs as input. Since amide-proton
anti-phase CEST profiles resemble anti-phase one-dimen-
sional NMR spectra, our rationale was that a DNN similar
to FID-Net can be trained to transform anti-phase CEST
profiles into ‘decoupled’ standard CEST profiles. Thus,
the DNN architecture used was built of two modules, a
module akin to a block in the FID-Net architecture (Karu-
nanithy and Hansen 2021) and a modified long short-term
memory (LSTM) module (Hansen 2019). The architec-
ture is described in detail in Supporting Material, Fig. S2,
where the pYTHON code for generating the model in Tensor-
flow/Keras (Chollet 2015; Abadi et al. 2016) is also pro-
vided. The theory for spin-evolution during CEST experi-
ments is well-established (Helgstrand et al. 2000; Hansen
et al. 2008; Vallurupalli et al. 2012), and synthetic training
data can therefore easily be generated by propagating the
Liouvillian over the desired element.

work decouples the time-domain anti-phase CEST profile to give (C),
which is transformed with an inverse real Fourier transform to give
the final in-phase CEST profile in (D). E Schematic representation of
the transformation from anti-phase CEST profiles to in-phase CEST
profiles with a fixed size

The first DNN, referred to as DNNy, was trained to
transform an input amide-proton anti-phase CEST profile
to the hypothetical CEST profile of an isolated 'H spin, with
;=0 Hz, Fig. 1. Thus, DNN decouples the anti-phase
amide proton CEST profile and upsamples it to 128 points.
The upsampling to a constant size, in this case 128 real
points, makes the prediction of chemical shifts with a second
DNN feasible, since DNNGs are typically trained with a con-
stant size of the input and output data (see below). A maxi-
mum of three exchanging states was assumed and only the
forked three-site exchange model was used to generate the
data, that is, E;, = G=E,, where E, and E, are sparsely pop-
ulated states. For 75% of the training data the population of
E, was set to zero. Because of the strong correlation between
CEST data reporting on different three-site exchange mod-
els, for example, E; = G=E, versus G=E, =E,, it is
anticipated that DNN will robustly transform anti-phase
CEST profiles derived from any three-site exchange pro-
cess. Briefly, DNN was trained on 15 X 10° CEST profiles,
where the range of training data is indicated in Table 1. The
loss function was calculated from the mean-squared-error
between the transformed in-phase CEST profile and the
target function, see Fig. 1D. The network was trained to

@ Springer
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Fig.2 Evaluation of the transformation of anti-phase 'H CEST pro-
files to in-phase CEST profiles using a DNN. A RMSD between
target and transformed in-phase CEST profile (see Fig. 1). Statis-
tics for 100,000 two-site exchange, G=E, CEST profiles, where
10s™'<k._ <3005, 0.01 <pp<0.15, 15 Hz< B, <50 Hz, 50 <Sam-

pled points <128,-95 HzSIJHN5—91 Hz, By€{14.1 T, 164 T,
18.8 T, 21.1 T, 23.5 T}. B Statistics for 100,000 three-site exchange
CEST profiles (E; = G=E,), where 10 s™ <k g, kexpr <300 57,
0.01 <pg;, ppp<0.15, 15 Hz<B;<50 Hz, 50<Sampled points<
128,-95 HZSIJHNS —-91 Hz, By€{14.1 T, 164 T, 188 T, 21.1 T,
23.5T}

a normalised mean-squared-error (MSE) of 4 x 10~ and a
mean-absolute-error (MAE) of 0.01.

The trained DNNp network was evaluated separately
on synthetic data for two- and three-site exchanging sys-
tems. Figure 2 shows the evaluation on 100,000 randomly
generated CEST profiles for two- (Fig. 2A) and three-site
(Fig. 2B) exchanging systems. Figure S3 shows the per-
formance of the DNN transformation as a function of the
strength of the weak field, B, the population of the sparse
state E, pg, the overall exchange rate, k., (ko, =kgrp+ kg,
for two-site interconversion) and the number of sampled
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Fig.3 Transformation of experimental anti-phase 'HN CEST pro-
files (AP CEST) recorded on a sample of the L99A mutant of T4
lysozyme into in-phase CEST profiles (IP CEST). The AP CEST pro-
files were recorded at a static magnetic field of 18.8 T, a temperature
of 284 K, and using a 30 Hz 'H B, field; 86 points were obtained
in the CEST dimension. A Transformation and upsampling to 128
points of the anti-phase CEST profile for Gly12, B transformation and
upsampling to 128 points of the anti-phase CEST profile for Thr142

offsets. The transformation of profiles from anti-phase
to in-phase by the DNNx network is robust and there
is only limited variation in the performance with differ-
ent parameters used to generate the CEST profiles. Of
particular interest is that the transformation is only mini-
mally affected by the number of points sampled in the
input profile, Fig. S3D, suggesting that the upsampling
is robust.

Having evaluated the DNN; network on synthetic data
it is important to assess how the DNN performs on exper-
imental anti-phase 'HN CEST profiles. Figure 3 shows
two examples, where 'HY anti-phase CEST profiles for
the L99A mutant of T4 lysozyme recorded at 18.8 T have
been transformed to in-phase CEST profiles (with the sca-
lar coupling removed). This representation immediately
allows estimation of the chemical shifts of "H nuclei of the
exchanging states, which can be used as initial parameters
for a least-squares analysis. However, these experimental
CEST profiles are associated with uncertainty and since
the ground truth (exact value) is not known a detailed eval-
uation of the performance is not directly possible.
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Determining 'H chemical shifts in exchanging states
using a deep neural network

With the in-phase CEST profiles available it becomes
substantially easier to estimate the chemical shifts of the
exchanging species. DNNs are particularly adept at locating
specific features in data, for example, localising particular
elements in an image. Thus, it is expected that a DNN could
be trained to determine the position of peaks in one-dimen-
sional NMR spectra and, consequently, trained to determine
the chemical shifts of the exchanging species from in-phase
CEST profiles or the related profiles, max(Z/1y) — I/I,,. The
densely connected convolutional neural network architec-
ture (Huang et al. 2016), which was originally developed
for object recognition tasks, was adapted here, Fig. S4, to
determine the chemical shifts from CEST profiles. Moreo-
ver, our goal was not only to determine the chemical shifts
of the interconverting conformers, but to also train the DNN
to estimate the uncertainties with which it determined these
shifts, thereby providing an output similar to a traditional
least-squares fitting procedure.

The output from a DNN is typically a fixed length and
a decision about the maximum number of exchanging
states therefore has to be made before training the network.
Since the time for training the DNN increases rapidly when
increasing the maximum number of exchanging states, we
chose for this application to only focus on CEST profiles
reporting on three or less states, which covers most of the
CEST-based studies reported to date. For a maximum of
three exchanging states the output from the DNN ¢ network
is a 3 X2 matrix whose elements are three chemical shifts,
J,prea» and their corresponding confidences, c,.q. When the
input CEST profile derives from a two-site exchanging sys-
tem, the DNN should report one confidence approaching
zero and when the input CEST profile is only reporting on
one state, two of the confidences should tend to zero.

To facilitate an end-to-end analysis, that is chemical shifts
and their uncertainties obtained directly from the experi-
mental anti-phase CEST profiles, the network to determine
chemical shifts was trained on outputs from DNNy, i.e.
in-phase CEST profiles generated from anti-phase profiles.
Having the second DNN, referred to as DNNg, determine
both chemical shifts and their confidences requires special
attention to the loss function used for training. Naturally, the
DNN(¢ network should be trained to optimise the confidence
and thus obtain as accurate peak positions as possible, how-
ever, it should also be penalised, when the predicted confi-
dence does not match the accuracy of the predicted chemical
shifts. A variety of DNN architectures and loss functions
have previously been designed to provide measures of the
uncertainty with which DNNs make their predictions and
transformations, also for the predictions of chemical shifts
(Jonas and Kuhn 2019). As detailed below, we have adopted

a strategy, where the loss function bears resemblance with
the cost function in a least-squares fitting procedure.

The last layer of DNN has sigmoidal activation, Fig.
S4, which means that the output values, three values report-
ing on chemical shifts and three confidences, are between
0 and 1. The predicted chemical shifts in the range (0, 1),
referred to as f,, ,.q, are easily converted into the range of
offsets obtained in the CEST dimension of the original data
using a linear mapping. For example, if the CEST profile is
recorded with points between 6.6 ppm and 10.0 ppm, then
the linear mapping will be 6« 3.4 ppmXf,, ,..q+6.6 ppm.
Moreover, a predicted uncertainty, 6.4, Was calculated from
the predicted confidence as 6,,.q =k (1/ceq — 1), where k is
a constant and 6,4 structured such that it can take values
between 0 and infinity. In order to make the predicted uncer-
tainties match actual uncertainties of the prediction, the first
part of the loss function was defined in a manner similar to

a standard ;{2, that is:

2
Lfreq _ Z (fa),pred,i - fa), true,i) (1)

i=0,1,2 O pred,i

where the sum is over the three states. The constant k was
initially set to 1 during training, and subsequently set to
(max ("H offsets) — min ('H offsets) ) /L, to rescale Ly,
to have an expectation value of 1 and so that 6,4 reports on
the expected uncertainty. The purpose of the loss function
in Eq. (1) is to make the predicted chemical shifts approach
their true values. However, if Lg., was the only loss func-
tion used during training, then training of DNNg would
simply lead to very low confidences (high uncertainties),
which would minimise the function in Eq. (1). A second loss
function was therefore added during training:

Luncer = 10_4 Z li V Gpred,i (2)

i=0,1,2

where, 1={1,1,1} for three-state exchange input and
1={1,1,0} in the case of two-state exchange, thereby allow-
ing large uncertainties, 6,4, When a state is not present in
the input. The loss function in Eq. (2) serves to force DNNg
to predict high confidences (low uncertainties) where, and
only where, the input profiles report on a real state. Briefly,
the DNNg network was trained on 1.5 107 randomly gen-
erated CEST profiles, with a final value of L., =7.3X 1072,
and L, .., =2.8 x 107, For the synthetic CEST data analysed
below, the range of 'H offsets was 3.4 ppm and therefore
k=0.029 ppm. Full details of the network architecture and
the training are provided in the Methods and Supporting
Information sections.

It is anticipated that with minimal additional training, the
DNN¢ network will be able to accurately analyse common
‘in-phase’ CEST profiles such as those often obtained for
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5N and '3C, since these CEST profiles strongly resemble
the IP-CEST profiles, Fig. 3. However, it should be stressed
that the current DNN¢ network has only been fully assessed
with 'H AP-CEST profiles that have been transformed with
DNNg-

End-to-end one-shot analysis of amide proton CEST

The two DNNs, DNN; and DNNg, described above can
be applied sequentially to provide an end-to-end one-shot
analysis of anti-phase CEST profiles:

real FT, DNNy, inverse FT
AP-CEST, cest ,p(®)

DNNgg
IP-CEST, cest;p(0)—— {f,,

Figure S7 shows the summary of evaluations where random
gaussian noise with a standard deviation of 0.01, 0.02, 0.04 of
the maximum value of each anti-phase CEST profile was added
to the input anti-phase CEST spectrum. The performance of the
sequential DNN shown above strictly only holds for the ranges
of data that were used for training and for the quantitative assess-
ments, Table 1. However, as shown below, the performance of
the DNN is rather robust and if the parameters of the CEST pro-
file to be analysed deviate only slightly from the training param-
eters one would still expect the analysis to be valid. The ranges
of parameters shown in Table 1 cover those obtained in most

, pred, i O-pred, i } i=0,1,2

The overall performance of this sequential DNN was first
evaluated using synthetically generated data. Specifically,
(1) 100,000 anti-phase CEST profiles were generated for a
variety of two-site chemical exchange processes and a fur-
ther 100,000 profiles for three-site exchange. The range of
B, offsets used was 3.4 ppm for all profiles, and all other
input parameters are given in Table 1. (ii) Random gaussian
noise with a standard deviation of 0.01 of the maximum
value of each anti-phase CEST profile was added to the input
anti-phase CEST spectrum. (iii) The DNNy network was
first used to transform all the CEST profiles from anti-phase
to in-phase. (iv) The second network, DNNg, was used to
determine the chemical shifts of the exchanging states and
their associated uncertainties.

Figure 4 shows a summary of the quantitative assessment of
the 100,000 CEST profiles corresponding to a two-state chemical
exchange process. From Fig. 4 it is clear that the sequential DNN
is able to accurately predict the chemical shifts of exchanging
states from anti-phase CEST profiles. From the chemical shift
predictions made on the 100,000 random CEST profiles the
difference between a predicted chemical shift, 6,4, and a true
chemical shift, 6., was calculated, which gives an estimate of
the performance and the confidence levels of the DNN as a func-
tion of ¢,q and 6.4 Importantly, as shown in Fig. 4C and D,
the DNN has also successfully been trained to predict the uncer-
tainty associated with the predicted chemical shifts. Specifically,
for ¢;.q>0.4, the predicted uncertainty, 6,4, agrees well with
the 68.3% confidence level estimated from the analysis of the
100,000 profiles. For ¢4 <0.4, 6,4 is no longer an accurate
measure of the uncertainty. Not surprisingly, the ground state
chemical shifts, Fig. 4E, are generally predicted with a higher
accuracy than the chemical shifts of the low-populated state,
Fig. 4F, where lower confidences are obtained for small chemical
shift differences between the two states, see Fig S5. The corre-
sponding assessment carried out on 100,000 synthetic anti-phase
'HN CEST profiles reporting on a three-site chemical exchange
process, E; =G =E,, is shown in Supporting Material, Fig. S6.
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of CEST-based studies to date and it is therefore expected that
most experimental anti-phase CEST profiles can be accurately
analysed using the DNNS.
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Fig.4 Quantitative assessment using 100,000 synthetic anti-phase
"HN CEST profiles reporting on a two-site chemical exchange and
analysed using the sequential DNN to determine the chemical shifts
of nuclei from the exchanging states. A, C and E assessment of the
ground-state predictions, B, D and F assessment of the predictions
of the low-populated state. A and B show differences between pre-
dicted (Syyeq) and true (§y,) chemical shift values, versus ¢4 for the
100,000 analysed CEST profiles (red dots). The full-drawn line corre-
sponds to the average and the dashed lines correspond to the standard
confidence levels, 68.3%, 95.4%, and 99.7%, respectively. C and D
show 2D histograms of the points in (A) and (B); that is, a 2D his-
togram of the differences between 6.4 and &, versus the predicted
confidence, cpq. The histogram was calculated with a resolution of
0.05 along c;eq and 0.005 ppm along e — Spreg- The blue dashed
lines show the predicted uncertainty, 6,..q=0.029(1/c,q— 1), which
for ¢;q>0.4 agrees well with the confidence levels obtained from
the analysis of the 100,000 profiles. E and F shows the distributions
of uncertainties obtained from the assessment
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Assessment of the sequential DNN to analyse
experimental CEST profiles

Experimental anti-phase "H CEST profiles for the L99A
mutant of T4 lysozyme were analysed using the sequential
and stacked DNN to gain insight into its performance on
experimental data. As a validation of the performance of
the fully stacked DNN two analyses were performed: in the
first all of the 86 B, offsets were used to predict chemical
shifts, while in the second, half of the offsets (every sec-
ond point) were removed. Figure 5A shows the example of
Gly12, where the predicted chemical shifts and uncertain-
ties using half of the B, offsets agrees well with the values
obtained using the full dataset. Generally, this holds for all
sites, Fig. 5B and the RMSDs obtained are in line with those
expected from the predicted uncertainties, 6,,,.4. The differ-
ences in chemical shifts based on analyses of the full and
half datasets, for all profiles, as a function of the confidence
level are highlighted in Fig. 5C. Finally, it should be noted
that the DNN network was only trained on profiles with
50-128 input points. The fact that the stacked DNN is able
to accurately predict the chemical shifts from profiles with
less data (43 points) than those used for training points to
the robustness of the DNN.

To further assess the performance of the stacked DNNs
in determining the chemical shifts of the exchanging states,
anti-phase CEST profiles were obtained for the G48A
mutant of the SH3 domain from Fyn (Yuwen et al. 2017a).
At a static magnetic field of 14.1 T, two sets of data were
obtained with B, fields of 26.7 Hz and 42 Hz. Figure 6A
shows that the chemical shifts predicted using the stacked
DNNs, independently, on the two different datasets agree
well (RMSD of 7 ppb), and Fig. 6B highlights the difference
in shifts based on the separate analyses of the two full data-
sets. Subsequently, the two experimental datasets were ana-
lysed simultaneously using a standard least-squares analysis
(Yuwen et al. 2017a) with the software package ChemEx
(https://github.com/gbouvignies/chemex) and the results
were compared with the predictions made by the DNN,
Fig. 6C. Again, the agreement between the chemical shifts
predicted by the DNN and those obtained by least-squares
fitting agree well, with an RMSD of 7 ppb.

Uncertainties obtained from the covariance matrix in a
least-squares analysis of CEST profiles are typically around
1 ppb, which is 6 times smaller than the uncertainties obtained
from the DNN, indicating that the stacked DNNs have not
fully reached the level of accuracy obtained by least-squares
fitting. Still, the predictions obtained from the analysis with the
stacked DNNs are of an accuracy where they can be used for
downstream analyses and are well beyond the level of accuracy
by which these shifts can be predicted from a high-resolution
structure (Han et al. 2011). Alternatively, the DNN-predicted
chemical shifts can serve as excellent starting parameters for
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Fig.5 Predicting the chemical shifts of exchanging states of L99A
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phase profiles, DNN, upsampled the recorded data to 128 points
and DNNg determined the chemical shifts. Two full analyses were
performed: One on the original 86 points recorded and another analy-
sis on half of the data. A Analysis of the anti-phase profile for Gly12
'HN emphasizes the robustness by which the sequential DNN deter-
mines chemical shifts and their predicted uncertainties. B Consist-
ency plot showing excellent agreement between the chemical shifts
determined from the full dataset (x-axis) and half of the data (y-axis).
Only data for which cp.q> 0.4 are shown. C Differences between the
predicted chemical shifts from the full dataset (Sprea [86 pts]) and half
of the data (6,q [43 pts]) versus the minimum of the confidence,
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(two datasets). Only data for which cp.q> 0.4 are shown
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a subsequent least-squares analysis. It is also possible that
larger or alternative DNN architectures along with longer
training periods could improve the performance of the DNN
predictions.

Conclusions

A deep neural network was developed and trained to deter-
mine amide proton chemical shifts of exchanging states from
anti-phase "HN CEST profiles. The approach first leads to
the conversion of anti-phase to in-phase 'HN CEST profiles,
whereafter the chemical shifts are predicted along with their
uncertainties. Compared with other analysis tools, the DNN
does not require any additional training and there are no user
adjustable parameters, which makes the analysis autonomous
and suitable for automated processing pipelines. Thus far, the
DNN only predicts chemical shifts. If additional parameters
are sought, such as exchange rates and populations, the output
shift values from the DNN can then serve as excellent starting
points for a least-squares fitting procedure. The methodology
and DNNs presented here add to the growing applications
of deep learning and artificial intelligence for the analysis
of NMR data, and provide an example of the autonomous
analysis of complex NMR data reporting on macromolecular
dynamics and chemical exchange.
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