Table S1. Methyl-TROSY NMR studies of biomolecules or complexes with total molecular masses greater than ca. 45 kDa. For systems that were primarily used for methodological developments (e.g., malate synthase G), only a handful of references are included. We restricted the references in this table to biomolecules that contained selectively 13CH3-labeled methyl groups in an otherwise highly deuterated background, for which NMR spectra were recorded via 1H-13C HMQC-based pulse sequences that preserve the methyl-TROSY effect. The biomolecules have been grouped into representative classes that are broadly based on biological functions.
	System
	MW (kDa)
	Reference

	Molecular Chaperones

	Hsp40

DNAJB1

DNAJB1 + HSPA8

DNAJA2

DNAJA2 + HSPA8

Sis1

Ydj1

DnaJ

DnaJ + DnaK
	80

150

80

150

80

80

80

150
	1,2
1
1
2
2
2
2
2

	Hsp70

DnaK

DnaK + ClpB

BiP

HSPA1

HSPA8

DnaK + hTRF1

Hsc70 + hTRF1

DnaK + R17*

DnaK + drkN SH3

Hsc70 + drkN SH3
	66

650

72

70
71
72, 84, 142

77

78

72

77
	3
4
5
6
6
7–9
7
8
8
8

	Hsp90
Hsp90

Hsp90-p23

Hsp90-Hop

Hsp90-Aha1

Hsp90-Tau

Hsp90-transthyretin

Hsp90-FKBP51

Hsp90-FKBP51-Tau

TRAP1

HtpG

Hsp90 co-chaperone Cdc37

Hsp90 co-chaperone Cdc37 + bRaf1 kinase domain
	170

200

240

215

220

185
280

330

150

145

45

72
	10–16
10
16
13,15
17
14
11
11
18
19
20
20

	Hsp100

ClpB

ClpB-α-casein

ClpB + DnaK
	580

655

650
	21
21
4

	Chaperonin
Hsp60

Hsp60 + lysozyme

Hsp60 + malate synthase G
	880

900

960
	22
22
22

	Prefoldin

Prefoldin-α2β4
Prefoldin-β4
	87

53
	23
23

	Trigger Factor

Trigger factor

Trigger factor-PhoA
	100 

200
	24,25
24,25

	Translocase Machinery

SecA

SecB

SecB + maltose binding protein

SecB + alkaline phosphatase

Translocase of the inner membrane (TIM), TIM9-TIM10 complex
TIM9-TIM10 + GGC1 carrier protein
TIM9-TIM10 + TIM23
	204

70

113
120

60
155
80
	26
27
27
27
28
28
29

	Flagellar chaperones
FliT + FliD
FliT + FliI
	65
65
	30
30

	Unfolded protein response
IRE1
	80
	31

	Small heat-shock proteins
αB-crystallin
	600+
	32–35

	Proteases and Degradation Machinery

	ClpP Proteases
ClpP

ClpP1P2

ClpQ (HslV)
	305

305

230
	36–42
43
44

	Proteasome

α7

α7α7

α7β7β7α7

11S- α7β7β7α7-11S
	180

360

670

1,030
	38,45
46–50
46,51–55
50,52,55


	Prolyl oligopeptidase
	81
	56

	Tetrahedral aminopeptidase (TET2)
	468
	57–65

	Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT)
	500
	66,67

	Valosin-containing protein (VCP) / p97 (fragment)

VCP / p97 (full-length)

VCP / p97 + p47
	320

540

410-500
	68–76
73,76
75

	Serine protease inhibitor Z α1-antitrypsin
	52
	77

	E3 ubiquitin-protein ligases 

Smurf1 Homologous to the E6-AP Carboxyl Terminus (HECT) domain

Smurf2 HECT domain 

HECT domain of the Rsp5p ubiquitin ligase + Ubc4 E2

Vif + CBF-β + Elongin-B + Elongin-C (VCBC) + dsDNA

VCBC complex + dsDNA + A3 C-terminal domain


	45

45

62

135

160
	78
79–81
82
83
83

	Ubiquitin ligase SCF Cdc4WD40 + pSic1
	50
	84

	Enzymes

	Tyrosyl-tRNA synthetase
	95
	85

	TryptophanyltRNA synthetase
	74
	85

	Enzyme I
	128
	86,87

	Aspartate transcarbamoylase (ATcase)
	300
	88–90

	Glucokinase
	53
	91–93

	Phosphopantetheine adenylyltransferase (CoaD)
	115
	94

	Chorismate mutase
	60
	95–97

	Phosphofructokinase
	136
	98

	Cyclization domain (Cy1) of the Yersiniabactin non-ribosomal peptide synthetase
	52
	99

	Chemotaxis protein A (CheA) histidine kinase + CheW


	120
	100

	Malate synthase G
	82
	101–107


	Imidazole glycerol phosphate synthase (IGPS / HisH + HisF) 
	50
	108–110

	IscU scaffold protein + IscS cysteine desulfurase 

IscU scaffold protein + IscS cysteine desulfurase + CyaY fratxin homolog
	110

130
	111
111

	Histones and Nucleosomes

	Nucleosome core particle (NCP)

D. melanogaster NCP

D. melanogaster NCP + high-mobility group nucleosomal protein 2
H2AK13Cub-NCP
D. melanogaster NCP + PWWP domain of PSIP1

X. laevis NCP

X. laevis NCP + SNF2h
D. melanogaster NCP + RNF168 RING domain
X. laevis NCP + Swi6

Human NCP
	210
230
250

215
210
450
225
280

210
	112–115
112
116
117
118
118
119
120
121


	Af1 + H3:H4 dimer + Vps752 + Rtt109
	160
	122,123

	Histone deacetylase 8 (HDAC8)
	45
	124

	Membrane Proteins

	KcsA potassium channel
	70+
	125

	Voltage-dependent anion channel (VDAC)
	32+
	126

	Sugar transport protein GalP
	52+
	127

	KirBac1.1 potassium channel
	148+
	128

	P2X4 purinergic receptor
	114+
	129

	Mitochondrial GTP/GDP carrier GGC
	33+
	130

	Adenosine A2A receptor
	45+
	131,132

	G-protein-activated inwardly rectifying potassium channel 1 (GIRK)
	90+
	133,134

	β2-adrenergic receptor 
+ β-arrestin 1
	40+
87+
	135,136
136

	Phototaxis receptor sensory rhodopsin II
	26+
	137

	Leukotriene B4 receptor BLT2
	38+
	138

	μ‐opioid receptor
	45+
	139

	EmrE multidrug transporter
	24+
	140

	Mg2+ transporter MgtE
	105+
	141

	RNA-binding proteins

	mRNA decapping enzyme
Dcp2

Dcs1p

Dcp1+Dcp2+RNA

DcpS
	50

80

50

80
	142
143
144
145

	Enhancer of decapping 3 (Edc3) 
	57
	146

	Exosome complex
Rrp41-Rrp42 exosome

+ RNA

+ Rrp4

+ Csl4

+ RNA + Rrp4
	175

185
290
175

300
	147–149
147–149
147–149
147–149
149

	mRNA degradation and pre‐mRNA splicing 

LSm1-7 complex
LSm2-8 complex
	72

72
	150
150

	pre-mRNA 3’ end processing complex
Hrp1

Hrp1 + Rna14 + Rna15 + RNA
	60
300
	151
151

	rRNA methylation

Box C/D ribonucleoprotein (RNP) complex
	180

390
	152
153

	RNA-dependent RNA polymerases

Non-structural protein 5B

ϕ6 P2

ϕ12 P2

3Dpol

	63

75

75

52
	154
155
155
156

	RNA-dependent DNA polymerases
HIV-1 reverse transcriptase 
p66/p66 homodimer
p66/p51 heterodimer

p66/p66 homodimer + tRNA
	132

127

157
	157
157
157

	Kinases

	Abl kinase
	60
	158,159

	Catalytic subunit of cAMP-dependent protein kinase (PKA-C)
	40
	160–162

	Extracellular signal-regulated kinase 2 (ERK2) MAP kinase
	42
	163–166

	Mitogen-activated protein kinase 14

(MAPK14 / p38α)
	41
	167

	Mitogen-activated protein kinase 12

(MAPK12 / p38γ)
	42
	168,169

	Fibroblast growth factor receptor2 (FGFR2) kinase domain + FGFR2 kinase domain
	73
	170

	DNA-binding proteins

	Transcription factors
p53
STAT3
Phosphorylated STAT3

QacR

Catabolite activator protein (CAP)

CAP + dsDNA
	175

70
140

50
50
60
	171
172
172
173
174
174

	DNA repair
Rad50 ATPase domain
Mre11 + Rad50 + Nbs1

Mre11 nuclease domain
Mre11 nuclease domain + ds DNA
	30, 60

180

64

86
	175
176
177
177

	σ54 + NtrC1
	210
	178

	In-cell or -lysate

	Immunoglobulin domain from Dictyostelium discoideum gelation factor ABP-120 (ddFLN5)
	N/A

(inside E. coli)
	179

	CAP‐Gly1 domain (CG1) of the CLIP‐170 protein
	N/A

(inside HeLa S3)
	180

	RAS GTPase
	N/A

(inside HeLa S3)
	181

	Calmodulin
	N/A

(inside E. coli)

N/A

(E. coli lysate)

N/A

(yeast lysate)
	182
183,184
184

	NmerA
	N/A
(inside E. coli)
	182

	FK506 binding protein
	N/A

(inside E. coli)
	182

	B1 domain of protein G
	N/A
(inside E. coli)
	185

	Heavy metal-binding protein TTHA1718
	N/A

(inside E. coli)
	186,187

	Antibodies and Immune Response

	B-domain of Protein A (FB) + Fc fragment of human IgG1 (FC)
	65
	188

	Class I major histocompatibility complexes (MHC-1)
MHC-1

MHC-1 + TABPR

TCRβ + pMHC1 complex
	45

87

95
	189
190

	Miscellaneous

	cAMP receptor protein
	50
	85

	Ribosome nascent chain (RNC) complexes
	2,400+
	191–193

	Calmodulin + eukaryotic elongation factor 2 
	75
	194

	PIDDosome complex
	130-160
	195

	Arp2/3 complex
	240
	196

	CD95/FADD homotypic death domain complex
	120
	197

	NES–CRM1–RanGTP
	120
	198

	Circadian clock KaiC-KaiB complex
Circadian clock KaiC protein
	440+

345
	199,200
199,200

	von Willebrand Factor TIL’E’:FVIII
	180
	201

	Biosensor Twitch-2B (fluorescent proteins mCerulean3 and cpVenus)
	62
	202

	BK VP1 capsid protein
	150
	203

	GII.4 Saga NoV P-domain
	70
	204,205

	Blood Group A Galactosyltransferase

Blood Group B Galactosyltransferase
	70

70
	206–208
206–209

	Myristoylated-Arf1 in Nanodiscs
	110
	210

	Outer-membrane anchored lipoprotein LpoAn
	70
	211
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· Tugarinov V, Hwang PM, Kay LE. Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu. Rev. Biochem. (2004) 73: 107-146.
· Kay LE. NMR studies of protein structure and dynamics. (2005) J. Magn. Reson. 173: 193-207.
· Tugarinov V, Kay LE. Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. ChemBioChem (2005) 6: 156-177.
· Ruschak AM, Kay LE. Methyl groups as probes of supra-molecular structure, dynamics and function. J. Biomol. NMR (2010) 46: 75-87.
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· Schütz S, Sprangers R. Methyl TROSY spectroscopy: a versatile NMR approach to study challenging biological systems. Prog. Nucl. Magn. Reson. Spectrosc. (2020) 116: 56-84.

· Pritišanac I, Alderson TR, Güntert P. Automated assignment of methyl NMR spectra from large proteins. Prog. Nucl. Magn. Reson. Spectrosc. (2020) 118: 54-73.
References
1.
Faust, O. et al. HSP40 proteins use class-specific regulation to drive HSP70 functional diversity. Nature 587, 489-494 (2020).
2.
Jiang, Y., Rossi, P. & Kalodimos, C. G. Structural basis for client recognition and activity of Hsp40 chaperones. Science 365, 1313–1319 (2019).

3.
Zhuravleva, A., Clerico, E. M. & Gierasch, L. M. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151, 1296–1307 (2012).

4.
Rosenzweig, R., Moradi, S., Zarrine-Afsar, A., Glover, J. R. & Kay, L. E. Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science 339, 1080–1083 (2013).

5.
Wieteska, L., Shahidi, S. & Zhuravleva, A. Allosteric fine-tuning of the conformational equilibrium poises the chaperone BiP for post-translational regulation. Elife 6, (2017).

6.
Meng, W., Clerico, E. M., McArthur, N. & Gierasch, L. M. Allosteric landscapes of eukaryotic cytoplasmic Hsp70s are shaped by evolutionary tuning of key interfaces. Proc. Natl. Acad. Sci. U. S. A. 115, 11970–11975 (2018).

7.
Rosenzweig, R., Sekhar, A., Nagesh, J. & Kay, L. E. Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles. Elife 6, e28030 (2017).

8.
Sekhar, A. et al. Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions. Elife 7, e32764 (2018).

9.
Sekhar, A., Nagesh, J., Rosenzweig, R. & Kay, L. E. Conformational heterogeneity in the Hsp70 chaperone-substrate ensemble identified from analysis of NMR-detected titration data. Protein Sci. 26, 2207–2220 (2017).

10.
Karagöz, G. E. et al. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc. Natl. Acad. Sci. U. S. A. 108, 580–585 (2011).

11.
Oroz, J. et al. Structure and pro-toxic mechanism of the human Hsp90/PPIase/Tau complex. Nat. Commun. 9, 4532 (2018).

12.
Kumar MV, V. et al. Molecular insights into the interaction of Hsp90 with allosteric inhibitors targeting the C-terminal domain. MedChemComm 9, 1323–1331 (2018).

13.
Xu, W. et al. Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1. Nat. Commun. 10, 2574 (2019).

14.
Oroz, J., Kim, J. H., Chang, B. J. & Zweckstetter, M. Mechanistic basis for the recognition of a misfolded protein by the molecular chaperone Hsp90. Nat. Struct. Mol. Biol. 24, 407–413 (2017).

15.
Oroz, J., Blair, L. J. & Zweckstetter, M. Dynamic Aha1 co-chaperone binding to human Hsp90. Protein Sci. 28, 1545–1551 (2019).

16.
Lott, A., Oroz, J. & Zweckstetter, M. Molecular basis of the interaction of Hsp90 with its co-chaperone Hop. Protein Sci. 29, 2422-2432 (2020).

17.
Karagöz, G. E. et al. Hsp90-tau complex reveals molecular basis for specificity in chaperone action. Cell 156, 963–974 (2014).

18.
Prestegard, J. H. et al. Sparse labeling of proteins: Structural characterization from long range constraints. J. Magn. Reson. 241, 32–40 (2014).

19.
Pederson, K. et al. NMR characterization of HtpG, the E. coli Hsp90, using sparse labeling with 13C-methyl alanine. J. Biomol. NMR 68, 225–236 (2017).

20.
Keramisanou, D., Aboalroub, A., Zhang, Z., Larsen, R. W. & Landgraf, R. Molecular Mechanism of Protein Kinase Recognition and Sorting by the Hsp90 Kinome-Specific Cochaperone Cdc37. Mol. Cell 62, 260–271 (2016).

21.
Rosenzweig, R. et al. ClpB N-terminal domain plays a regulatory role in protein disaggregation. Proc. Natl. Acad. Sci. U. S. A. 112, E6872–E6881 (2015).

22.
Mas, G. et al. Structural investigation of a chaperonin in action reveals how nucleotide binding regulates the functional cycle. Sci. Adv. 4, eaau4196 (2018).

23.
Törner, R., Awad, R., Gans, P., Brutscher, B. & Boisbouvier, J. Spectral editing of intra- and inter-chain methyl–methyl NOEs in protein complexes. J. Biomol. NMR 74, 83–94 (2020).

24.
Saio, T., Kawagoe, S., Ishimori, K. & Kalodimos, C. G. Oligomerization of a molecular chaperone modulates its activity. Elife 7, e35731 (2018).

25.
Saio, T., Guan, X., Rossi, P., Economou, A. & Kalodimos, C. G. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344, 1250494 (2014).

26.
Gelis, I. et al. Structural Basis for Signal-Sequence Recognition by the Translocase Motor SecA as Determined by NMR. Cell 131, 756–769 (2007).

27.
Huang, C., Rossi, P., Saio, T. & Kalodimos, C. G. Structural basis for the antifolding activity of a molecular chaperone. Nature 537, 202–206 (2016).

28.
Weinhäupl, K. et al. Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space. Cell 175, 1365-1379.e25 (2018).

29.
Sučec, I. et al. Structural basis of client specificity in mitochondrial membrane-protein chaperones. bioRxiv 2020.06.08.140772 (2020). doi:10.1101/2020.06.08.140772

30.
Khanra, N., Rossi, P., Economou, A. & Kalodimos, C. G. Recognition and targeting mechanisms by chaperones in flagellum assembly and operation. Proc. Natl. Acad. Sci. U. S. A. 113, 9798–9803 (2016).

31.
Karagöz, G. E. et al. An unfolded protein-induced conformational switch activates mammalian IRE1. Elife 6, e30700 (2017).

32.
Baldwin, A. J. et al. Probing dynamic conformations of the high-molecular-weight αb-crystallin heat shock protein ensemble by NMR spectroscopy. J. Am. Chem. Soc. 134, 15343–15350 (2012).

33.
Baldwin, A. J. et al. Quaternary dynamics of αb-crystallin as a direct consequence of localised tertiary fluctuations in the C-terminus. J. Mol. Biol. 413, 310–320 (2011).

34.
Baldwin, A. J. et al. The polydispersity of αb-crystallin is rationalized by an interconverting polyhedral architecture. Structure 19, 1855–1863 (2011).

35.
Baldwin, A. J. & Kay, L. E. Measurement of the signs of methyl 13C chemical shift differences between interconverting ground and excited protein states by R 1ρ: An application to αB-crystallin. J. Biomol. NMR 53, 1–12 (2012).

36.
Tugarinov, V., Hwang, P. M., Ollerenshaw, J. E. & Kay, L. E. Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc. 125, 10420–10428 (2003).

37.
Sprangers, R., Gribun, A., Hwang, P. M., Houry, W. A. & Kay, L. E. Quantitative NMR spectroscopy of supramolecular complexes: Dynamic side pores in ClpP are important for product release. Proc. Natl. Acad. Sci. U. S. A. 102, 16678–16683 (2005).

38.
Religa, T. L., Ruschak, A. M., Rosenzweig, R. & Kay, L. E. Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: Applications to the proteasome and to the ClpP protease. J. Am. Chem. Soc. 133, 9063–9068 (2011).

39.
Vahidi, S. et al. Reversible inhibition of the ClpP protease via an N-terminal conformational switch. Proc. Natl. Acad. Sci. U. S. A. 115, E6447–E6456 (2018).

40.
Ripstein, Z. A., Vahidi, S., Rubinstein, J. L. & Kay, L. E. A pH-Dependent Conformational Switch Controls N. meningitidis ClpP Protease Function. J. Am. Chem. Soc., 142, 20519-20523 (2020).
41.
Felix, J. et al. Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors. Sci. Adv. 5, eaaw3818 (2019).

42.
Mabanglo, M. F. et al. ClpP protease activation results from the reorganization of the electrostatic interaction networks at the entrance pores. Commun. Biol. 2, 410 (2019).

43.
Vahidi, S. et al. An allosteric switch regulates Mycobacterium tuberculosis ClpP1P2 protease function as established by cryo-EM and methyl-TROSY NMR. Proc. Natl. Acad. Sci. U. S. A. 117, 5895–5906 (2020).

44.
Shi, L. & Kay, L. E. Tracing an allosteric pathway regulating the activity of the HslV protease. Proc. Natl. Acad. Sci. U. S. A. 111, 2140–2145 (2014).

45.
Huang, R., Pérez, F. & Kay, L. E. Probing the cooperativity of Thermoplasma acidophilum proteasome core particle gating by NMR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 114, E9846–E9854 (2017).

46.
Sprangers, R. & Kay, L. E. Probing supramolecular structure from measurement of methyl 1H-13C residual dipolar couplings. J. Am. Chem. Soc. 129, 12668–12669 (2007).

47.
Sprangers, R. et al. TROSY-based NMR evidence for a novel class of 20S proteasome inhibitors. Biochemistry 47, 6727–6734 (2008).

48.
Siemons, L., Mackenzie, H. W., Shukla, V. K. & Hansen, D. F. Intra-residue methyl–methyl correlations for valine and leucine residues in large proteins from a 3D-HMBC-HMQC experiment. J. Biomol. NMR 73, 749–757 (2019).

49.
Tugarinov, V., Sprangers, R. & Kay, L. E. Probing side-chain dynamics in the proteasome by relaxation violated coherence transfer NMR spectroscopy. J. Am. Chem. Soc. 129, 1743–1750 (2007).

50.
Sprangers, R. & Kay, L. E. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445, 618–622 (2007).

51.
Ruschak, A. M., Religa, T. L., Breuer, S., Witt, S. & Kay, L. E. The proteasome antechamber maintains substrates in an unfolded state. Nature 467, 868–871 (2010).

52.
Ruschak, A. M. & Kay, L. E. Proteasome allostery as a population shift between interchanging conformers. Proc. Natl. Acad. Sci. U. S. A. 109, (2012).

53.
Velyvis, A. & Kay, L. E. Measurement of active site ionization equilibria in the 670 kDa proteasome core particle using methyl-TROSY NMR. J. Am. Chem. Soc. 135, 9259–9262 (2013).

54.
Latham, M. P., Sekhar, A. & Kay, L. E. Understanding the mechanism of proteasome 20S core particle gating. Proc. Natl. Acad. Sci. U. S. A. 111, 5532–5537 (2014).

55.
Rennella, E., Huang, R., Yu, Z. & Kay, L. E. Exploring long-range cooperativity in the 20S proteasome core particle from Thermoplasma acidophilum using methyl-TROSY–based NMR. Proc. Natl. Acad. Sci. U. S. A. 117, 5298–5309 (2020).

56.
López, A. et al. Active-Site-Directed Inhibitors of Prolyl Oligopeptidase Abolish Its Conformational Dynamics. ChemBioChem 17, 913–917 (2016).

57.
Imbert, L. et al. In Vitro Production of Perdeuterated Proteins in H2O for Biomolecular NMR Studies. in Methods in Molecular Biology 2199, 127–149 (Humana Press Inc., 2021).

58.
Gauto, D. F. et al. Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex. Nat. Commun. 10, 2697 (2019).

59.
Macek, P. et al. Unraveling self-assembly pathways of the 468-kDa proteolytic machine TET2. Sci. Adv. 3, e1601601 (2017).

60.
Crublet, E. et al. A cost-effective protocol for the parallel production of libraries of 13CH3-specifically labeled mutants for NMR studies of high molecular weight proteins. Methods Mol. Biol. 1091, 229–244 (2014).

61.
Mas, G., Crublet, E., Hamelin, O., Gans, P. & Boisbouvier, J. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins. J. Biomol. NMR 57, 251–262 (2013).

62.
Ayala, I. et al. An optimized isotopic labelling strategy of isoleucine-γ2 methyl groups for solution NMR studies of high molecular weight proteins. Chem. Commun. 48, 1434–1436 (2012).

63.
Amero, C. et al. A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. J. Biomol. NMR 50, 229–236 (2011).

64.
Gans, P. et al. Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew. Chemie - Int. Ed. 49, 1958–1962 (2010).

65.
Amero, C. et al. Fast Two-Dimensional NMR Spectroscopy of High Molecular Weight Protein Assemblies. J. Am. Chem. Soc. 131, 3448–3449 (2009).

66.
Augustyniak, R. & Kay, L. E. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates. Proc. Natl. Acad. Sci. U. S. A. 115, E4786–E4795 (2018).

67.
Huang, R. et al. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study. Proc. Natl. Acad. Sci. U. S. A. 113, E4090-W4199 (2016).

68.
Isaacson, R. L. et al. A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J. Am. Chem. Soc. 129, 15428–15429 (2007).

69.
Chimenti, M. S. et al. A fragment-based ligand screen against part of a large protein machine: The ND1 domains of the AAA+ ATPase p97/VCP. J. Biomol. Screen. 20, 788–800 (2015).

70.
Yuwen, T., Huang, R., Vallurupalli, P. & Kay, L. E. A Methyl-TROSY-Based 1H Relaxation Dispersion Experiment for Studies of Conformational Exchange in High Molecular Weight Proteins. Angew. Chemie - Int. Ed. 58, 6250–6254 (2019).

71.
Huang, R., Ripstein, Z. A., Rubinstein, J. L. & Kay, L. E. Cooperative subunit dynamics modulate p97 function. Proc. Natl. Acad. Sci. U. S. A. 116, 158–167 (2019).

72.
Schütz, A. K., Rennella, E. & Kay, L. E. Exploiting conformational plasticity in the AAA+ protein VCP/p97 to modify function. Proc. Natl. Acad. Sci. U. S. A. 114, E6822–E6829 (2017).

73.
Schuetz, A. K. & Kay, L. E. A dynamic molecular basis for malfunction in disease mutants of p97/VCP. Elife 5, (2016).

74.
Rennella, E., Schuetz, A. K. & Kay, L. E. Quantitative measurement of exchange dynamics in proteins via 13C relaxation dispersion of 13CHD2-labeled samples. J. Biomol. NMR 65, 59–64 (2016).

75.
Conicella, A. E. et al. An intrinsically disordered motif regulates the interaction between the p47 adaptor and the p97 AAA+ ATPase. Proc. Natl. Acad. Sci. U. S. A. 117, 26226–26236 (2020).

76.
Rydzek, S., Shein, M., Bielytskyi, P. & Schütz, A. K. Observation of a Transient Reaction Intermediate Illuminates the Mechanochemical Cycle of the AAA-ATPase p97. J. Am. Chem. Soc. 142, 14472–14480 (2020).

77.
Jagger, A. M., Waudby, C. A., Irving, J. A., Christodoulou, J. & Lomas, D. A. High-resolution ex vivo NMR spectroscopy of human Z α1-antitrypsin. Nat. Commun. 11, 6371 (2020).

78.
Ruetalo, N. et al. The WW1 Domain Enhances Autoinhibition in Smurf Ubiquitin Ligases. J. Mol. Biol. 431, 4834–4847 (2019).

79.
Ogunjimi, A. A. et al. The ubiquitin binding region of the smurf HECT domain facilitates polyubiquitylation and binding of ubiquitylated substrates. J. Biol. Chem. 285, 6308–6315 (2010).

80.
Wiesner, S. et al. Autoinhibition of the HECT-Type Ubiquitin Ligase Smurf2 through Its C2 Domain. Cell 130, 651–662 (2007).

81.
Mari, S. et al. Structural and functional framework for the autoinhibition of nedd4-family ubiquitin ligases. Structure 22, 1639–1649 (2014).

82.
Stoffregen, M. C., Schwer, M. M., Renschler, F. A. & Wiesner, S. Methionine scanning as an NMR tool for detecting and analyzing biomolecular interaction surfaces. Structure 20, 573–581 (2012).

83.
Ball, K. A. et al. Conformational Dynamics of the HIV-Vif Protein Complex. Biophys. J. 116, 1432–1445 (2019).

84.
Csizmok, V. et al. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase. Nat. Commun. 8, 13943 (2017).

85.
Godoy-Ruiz, R., Krejcirikova, A., Gallagher, D. T. & Tugarinov, V. Solution NMR evidence for symmetry in functionally or crystallographically asymmetric homodimers. J. Am. Chem. Soc. 133, 19578–19581 (2011).

86.
Venditti, V., Tugarinov, V., Schwieters, C. D., Grishaev, A. & Clore, G. M. Large interdomain rearrangement triggered by suppression of micro-to millisecond dynamics in bacterial Enzyme I. Nat. Commun. 6, 5960 (2015).

87.
Dotas, R. R. et al. Hybrid Thermophilic/Mesophilic Enzymes Reveal a Role for Conformational Disorder in Regulation of Bacterial Enzyme I. J. Mol. Biol. 432, 4481–4498 (2020).

88.
Velyvis, A., Schachman, H. K. & Kay, L. E. Assignment of Ile, Leu, and Val methyl correlations in supra-molecular systems: An application to aspartate transcarbamoylase. J. Am. Chem. Soc. 131, 16534–16543 (2009).

89.
Velyvis, A., Schachman, H. K. & Kay, L. E. Application of Methyl-TROSY NMR to Test Allosteric Models Describing Effects of Nucleotide Binding to Aspartate Transcarbamoylase. J. Mol. Biol. 387, 540–547 (2009).

90.
Velyvis, A., Yang, Y. R., Schachman, H. K. & Kay, L. E. A solution NMR study showing that active site ligands and nucleotides directly perturb the allosteric equilibrium in aspartate transcarbamoylase. Proc. Natl. Acad. Sci. U. S. A. 104, 8815–8820 (2007).

91.
Carl Whittington, A. et al. Dual allosteric activation mechanisms in monomeric human glucokinase. Proc. Natl. Acad. Sci. U. S. A. 112, 11553–11558 (2015).

92.
Larion, M. et al. Kinetic Cooperativity in Human Pancreatic Glucokinase Originates from Millisecond Dynamics of the Small Domain. Angew. Chemie - Int. Ed. 54, 8129–8132 (2015).

93.
Larion, M., Salinas, R. K., Bruschweiler-Li, L., Miller, B. G. & Brüschweiler, R. Order-Disorder Transitions Govern Kinetic Cooperativity and Allostery of Monomeric Human Glucokinase. PLoS Biol. 10, e1001452 (2012).

94.
Proudfoot, A., Frank, A. O., Ruggiu, F., Mamo, M. & Lingel, A. Facilitating unambiguous NMR assignments and enabling higher probe density through selective labeling of all methyl containing amino acids. J. Biomol. NMR 65, 15–27 (2016).

95.
Gorman, S. D., Sahu, D., O’Rourke, K. F. & Boehr, D. D. Assigning methyl resonances for protein solution-state NMR studies. Methods 148, 88–99 (2018).

96.
Gorman, S. D., Winston, D. S., Sahu, D. & Boehr, D. D. Different Solvent and Conformational Entropy Contributions to the Allosteric Activation and Inhibition Mechanisms of Yeast Chorismate Mutase. Biochemistry 59, 2528–2540 (2020).

97.
Gorman, S. D. & Boehr, D. D. Energy and Enzyme Activity Landscapes of Yeast Chorismate Mutase at Cellular Concentrations of Allosteric Effectors. Biochemistry 58, 4058–4069 (2019).

98.
Whitaker, A. M., Naik, M. T., Mosser, R. E. & Reinhart, G. D. Propagation of the Allosteric Signal in Phosphofructokinase from Bacillus stearothermophilus Examined by Methyl-Transverse Relaxation-Optimized Spectroscopy Nuclear Magnetic Resonance. Biochemistry 58, 5294–5304 (2019).

99.
Mishra, S. H. & Frueh, D. P. Assignment of methyl NMR resonances of a 52 kDa protein with residue-specific 4D correlation maps. J. Biomol. NMR 62, 281–290 (2015).

100.
Hamel, D. J. & Dahlquist, F. W. The contact interface of a 120 kD CheA-CheW complex by methyl TROSY interaction spectroscopy. J. Am. Chem. Soc. 127, 9676–9677 (2005).

101.
Tugarinov, V., Kanelis, V. & Kay, L. E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1, 749–754 (2006).

102.
Tugarinov, V., Kay, L. E., Ibraghimov, I. & Orekhov, V. Y. High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J. Am. Chem. Soc. 127, 2767–2775 (2005).

103.
Tugarinov, V., Choy, W. Y., Orekhov, V. Y. & Kay, L. E. Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc. Natl. Acad. Sci. U. S. A. 102, 622–627 (2005).

104.
Korzhnev, D. M., Kloiber, K., Kanelis, V., Tugarinov, V. & Kay, L. E. Probing Slow Dynamics in High Molecular Weight Proteins by Methyl-TROSY NMR Spectroscopy: Application to a 723-Residue Enzyme. J. Am. Chem. Soc. 126, 3964–3973 (2004).

105.
Tugarinov, V. & Kay, L. E. Ile, Leu, and Val Methyl Assignments of the 723-Residue Malate Synthase G Using a New Labeling Strategy and Novel NMR Methods. J. Am. Chem. Soc. 125, 13868–13878 (2003).

106.
Tugarinov, V., Hwang, P. M., Ollerenshaw, J. E. & Kay, L. E. Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc. 125, 10420–10428 (2003).

107.
Siemons, L., Mackenzie, H. W., Shukla, V. K. & Hansen, D. F. Intra-residue methyl–methyl correlations for valine and leucine residues in large proteins from a 3D-HMBC-HMQC experiment. J. Biomol. NMR 73, 749–757 (2019).

108.
Lisi, G. P., East, K. W., Batista, V. S. & Loria, J. P. Altering the allosteric pathway in IGPS suppresses millisecond motions and catalytic activity. Proc. Natl. Acad. Sci. U. S. A. 114, E3414–E3423 (2017).

109.
Lisi, G. P. P. et al. Dissecting Dynamic Allosteric Pathways Using Chemically Related Small-Molecule Activators. Structure 24, 1155–1166 (2016).

110.
Lisi, G. P., Currier, A. A. & Loria, J. P. Glutamine hydrolysis by imidazole glycerol phosphate synthase displays temperature dependent allosteric activation. Front. Mol. Biosci. 5, (2018).

111.
di Maio, D., Chandramouli, B., Yan, R., Brancato, G. & Pastore, A. Understanding the role of dynamics in the iron sulfur cluster molecular machine. Biochim. Biophys. Acta - Gen. Subj. 1861, 3154–3163 (2017).

112.
Kato, H. et al. Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Proc. Natl. Acad. Sci. U. S. A. 108, 12283–12288 (2011).

113.
Zhou, B. R. et al. Histone H4 K16Q mutation, an acetylation mimic, causes structural disorder of its n-terminal basic patch in the nucleosome. J. Mol. Biol. 421, 30–37 (2012).

114.
Kitevski-Leblanc, J. L. et al. Investigating the Dynamics of Destabilized Nucleosomes Using Methyl-TROSY NMR. J. Am. Chem. Soc. 140, 4774–4777 (2018).

115.
Abramov, G., Velyvis, A., Rennella, E., Wong, L. E. & Kay, L. E. A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. Proc. Natl. Acad. Sci. U. S. A. 117, 12836–12846 (2020).

116.
Kitevski-Leblanc, J. et al. The rnf168 paralog rnf169 defines a new class of ubiquitylated histone reader involved in the response to dna damage. Elife 6, e23872 (2017).

117.
Van Nuland, R. et al. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics and Chromatin 6, 12 (2013).

118.
Sinha, K. K., Gross, J. D. & Narlikar, G. J. Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler. Science 355, eaaa3761 (2017).

119.
Horn, V. et al. Structural basis of specific H2A K13/K15 ubiquitination by RNF168. Nat. Commun. 10, 1751 (2019).

120.
Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

121.
Hu, Q., Botuyan, M. V., Cui, G., Zhao, D. & Mer, G. Mechanisms of Ubiquitin-Nucleosome Recognition and Regulation of 53BP1 Chromatin Recruitment by RNF168/169 and RAD18. Mol. Cell 66, 473-487.e9 (2017).

122.
Danilenko, N. et al. Histone chaperone exploits intrinsic disorder to switch acetylation specificity. Nat. Commun. 10, 3435 (2019).

123.
Lercher, L., Danilenko, N., Kirkpatrick, J. & Carlomagno, T. Structural characterization of the Asf1-Rtt109 interaction and its role in histone acetylation. Nucleic Acids Res. 46, 2279–2289 (2018).

124.
Werbeck, N. D. et al. A distal regulatory region of a class I human histone deacetylase. Nat. Commun. 11, 3841 (2020).

125.
Imai, S., Osawa, M., Takeuchi, K. & Shimada, I. Structural basis underlying the dual gate properties of KcsA. Proc. Natl. Acad. Sci. U. S. A. 107, 6216–6221 (2010).

126.
Hiller, S. et al. Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321, 1206–1210 (2008).
127.
Kalverda, A. P. et al. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Mol. Membr. Biol. 31, 131–140 (2014).

128.
Toyama, Y., Osawa, M., Yokogawa, M. & Shimada, I. NMR Method for Characterizing Microsecond-to-Millisecond Chemical Exchanges Utilizing Differential Multiple-Quantum Relaxation in High Molecular Weight Proteins. J. Am. Chem. Soc. 138, 2302–2311 (2016).

129.
Minato, Y. et al. Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region. Proc. Natl. Acad. Sci. U. S. A. 113, 4741–4746 (2016).

130.
Kurauskas, V., Schanda, P. & Sounier, R. Methyl-specific isotope labeling strategies for NMR studies of membrane proteins. in Methods in Molecular Biology 1635, 109–123 (Humana Press Inc., 2017).

131.
Ali, R. et al. Improved strategy for isoleucine 1H/13C methyl labeling in Pichia pastoris. J. Biomol. NMR 73, 687–697 (2019).

132.
Clark, L. D. et al. Ligand modulation of sidechain dynamics in a wild-type human GPCR. Elife 6, e28505 (2017).
133.
Toyama, Y. et al. Structural basis for the ethanol action on G-protein-activated inwardly rectifying potassium channel 1 revealed by NMR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 115, 3858–3863 (2018).

134.
Kano, H. et al. Structural mechanism underlying G protein family-specific regulation of G protein-gated inwardly rectifying potassium channel. Nat. Commun. 10, 2008 (2019).

135.
Kofuku, Y. et al. Deuteration and selective labeling of alanine methyl groups of β2-adrenergic receptor expressed in a baculovirus-insect cell expression system. J. Biomol. NMR 71, 185–192 (2018).

136.
Shiraishi, Y. et al. Phosphorylation-induced conformation of β2-adrenoceptor related to arrestin recruitment revealed by NMR. Nat. Commun. 9, 194 (2018).

137.
Gautier, A., Mott, H. R., Bostock, M. J., Kirkpatrick, J. P. & Nietlispach, D. Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat. Struct. Mol. Biol. 17, 768–774 (2010).

138.
Casiraghi, M. et al. Functional Modulation of a G Protein-Coupled Receptor Conformational Landscape in a Lipid Bilayer. J. Am. Chem. Soc. 138, 11170–11175 (2016).

139.
Okude, J. et al. Identification of a Conformational Equilibrium That Determines the Efficacy and Functional Selectivity of the μ-Opioid Receptor. Angew. Chemie Int. Ed. 54, 15771–15776 (2015).

140.
Leninger, M., Her, A. S. & Traaseth, N. J. Inducing conformational preference of the membrane protein transporter EmrE through conservative mutations. Elife 8, e48909 (2019).

141.
Maruyama, T. et al. Functional roles of Mg 2+ binding sites in ion-dependent gating of a Mg 2+ channel, MgtE, revealed by solution NMR. Elife 7, e31596 (2018).

142.
Floor, S. N., Borja, M. S. & Gross, J. D. Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan. Proc. Natl. Acad. Sci. U. S. A. 109, 2872–2877 (2012).

143.
Neu, A., Neu, U., Fuchs, A. L., Schlager, B. & Sprangers, R. An excess of catalytically required motions inhibits the scavenger decapping enzyme. Nat. Chem. Biol. 11, 697–704 (2015).

144.
Wurm, J. P., Holdermann, I., Overbeck, J. H., Mayer, P. H. O. & Sprangers, R. Changes in conformational equilibria regulate the activity of the Dcp2 decapping enzyme. Proc. Natl. Acad. Sci. U. S. A. 114, 6034–6039 (2017).

145.
Fuchs, A. L., Wurm, J. P., Neu, A. & Sprangers, R. Molecular basis of the selective processing of short mRNA substrates by the DcpS mRNA decapping enzyme. Proc. Natl. Acad. Sci. U. S. A. 117, 19237–19244 (2020).

146.
Damman, R. et al. Atomic-level insight into mRNA processing bodies by combining solid and solution-state NMR spectroscopy. Nat. Commun. 10, 4536 (2019).

147.
Audin, M. J. C. et al. The archaeal exosome: Identification and quantification of site-specific motions that correlate with Cap and RNA binding. Angew. Chemie - Int. Ed. 52, 8312–8316 (2013).

148.
Audin, M. J. C., Wurm, J. P., Cvetkovic, M. A. & Sprangers, R. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation. Nucleic Acids Res. 44, 2962–2973 (2016).

149.
Cvetkovic, M. A., Wurm, J. P., Audin, M. J., Schütz, S. & Sprangers, R. The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism. Nat. Chem. Biol. 13, 522–528 (2017).

150.
Mund, M., Overbeck, J. H., Ullmann, J. & Sprangers, R. LEGO-NMR spectroscopy: A method to visualize individual subunits in large heteromeric complexes. Angew. Chemie - Int. Ed. 52, 11401–11405 (2013).

151.
Barnwal, R. P., Lee, S. D., Moore, C. & Varani, G. Structural and biochemical analysis of the assembly and function of the yeast pre-mRNA 3′ end processing complex CF I. Proc. Natl. Acad. Sci. U. S. A. 109, 21342–21347 (2012).

152.
Lapinaite, A. et al. The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature 502, 519–523 (2013).

153.
Graziadei, A., Gabel, F., Kirkpatrick, J. & Carlomagno, T. The guide sRNA sequence determines the activity level of BOX C/D RNPs. Elife 9, e50027 (2020).

154.
Bessa, L. M. et al. NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5. J. Biol. Chem. 292, 18024–18043 (2017).

155.
Alphonse, S. & Ghose, R. Methyl NMR spectroscopy: Measurement of dynamics in viral RNA-directed RNA polymerases. Methods 148, 100–114 (2018).

156.
Yang, X., Welch, J. L., Arnold, J. J. & Boehr, D. D. Long-range interaction networks in the function and fidelity of poliovirus RNA-dependent RNA polymerase studied by nuclear magnetic resonance. Biochemistry 49, 9361–9371 (2010).

157.
Slack, R. L. et al. Conformational Changes in HIV-1 Reverse Transcriptase that Facilitate Its Maturation. Structure 27, 1581-1593.e3 (2019).

158.
Saleh, T., Rossi, P. & Kalodimos, C. G. Atomic view of the energy landscape in the allosteric regulation of Abl kinase. Nat. Struct. Mol. Biol. 24, 893–901 (2017).

159.
Xie, T., Saleh, T., Rossi, P. & Kalodimos, C. G. Conformational states dynamically populated by a kinase determine its function. Science 370, eabc2754 (2020).
160.
Kim, J. et al. A dynamic hydrophobic core orchestrates allostery in protein kinases. Sci. Adv. 3, e1600663 (2017).

161.
Chao, F. A. et al. FLAMEnGO 2.0: An enhanced fuzzy logic algorithm for structure-based assignment of methyl group resonances. J. Magn. Reson. 245, 17–23 (2014).

162.
Wang, Y. et al. Globally correlated conformational entropy underlies positive and negative cooperativity in a kinase’s enzymatic cycle. Nat. Commun. 10, 799 (2019).

163.
Xiao, Y. et al. Phosphorylation releases constraints to domain motion in ERK2. Proc. Natl. Acad. Sci. U. S. A. 111, 2506–2511 (2014).

164.
Xiao, Y., Warner, L. R., Latham, M. P., Ahn, N. G. & Pardi, A. Structure-Based Assignment of Ile, Leu, and Val Methyl Groups in the Active and Inactive Forms of the Mitogen-Activated Protein Kinase Extracellular Signal-Regulated Kinase 2. Biochemistry 54, 4307–4319 (2015).

165.
Pegram, L. M. et al. Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2. Proc. Natl. Acad. Sci. U. S. A. 116, 15463–15468 (2019).

166.
Iverson, D. B., Xiao, Y., Jones, D. N., Eisenmesser, E. Z. & Ahn, N. G. Activation Loop Dynamics Are Coupled to Core Motions in Extracellular Signal-Regulated Kinase-2. Biochemistry 59, 2698–2706 (2020).

167.
Tokunaga, Y., Takeuchi, K., Takahashi, H. & Shimada, I. Allosteric enhancement of MAP kinase p38 ’s activity and substrate selectivity by docking interactions. Nat. Struct. Mol. Biol. 21, 704–711 (2014).

168.
Aoto, P. C., Stanfield, R. L., Wilson, I. A., Dyson, H. J. & Wright, P. E. A Dynamic Switch in Inactive p38γLeads to an Excited State on the Pathway to an Active Kinase. Biochemistry 58, 5160–5172 (2019).

169.
Aoto, P. C., Martin, B. T. & Wright, P. E. NMR Characterization of Information Flow and Allosteric Communities in the MAP Kinase p38 3. Sci. Rep. 6, 28655 (2016).

170.
Chen, L. et al. Molecular basis for receptor tyrosine kinase A-loop tyrosine transphosphorylation. Nat. Chem. Biol. 16, 267–277 (2020).

171.
Bista, M., Freund, S. M. & Fersht, A. R. Domain-domain interactions in full-length p53 and a specific DNA complex probed by methyl NMR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 109, 15752–15756 (2012).

172.
Namanja, A. T., Wang, J., Buettner, R., Colson, L. & Chen, Y. Allosteric Communication across STAT3 Domains Associated with STAT3 Function and Disease-Causing Mutation. J. Mol. Biol. 428, 579–589 (2016).

173.
Takeuchi, K., Imai, M. & Shimada, I. Conformational equilibrium defines the variable induction of the multidrug-binding transcriptional repressor QacR. Proc. Natl. Acad. Sci. U. S. A. 116, 19963–19972 (2019).

174.
Tzeng, S. R. & Kalodimos, C. G. Protein activity regulation by conformational entropy. Nature 488, 236–240 (2012).

175.
Boswell, Z. K., Rahman, S., Canny, M. D. & Latham, M. P. A dynamic allosteric pathway underlies Rad50 ABC ATPase function in DNA repair. Sci. Rep. 8, 1639 (2018).

176.
Boswell, Z. K., Canny, M. D., Buschmann, T. A., Sang, J. & Latham, M. P. Adjacent mutations in the archaeal Rad50 ABC ATPase D-loop disrupt allosteric regulation of ATP hydrolysis through different mechanisms. Nucleic Acids Res. 48, 2457–2472 (2020).

177.
Rahman, S., Beikzadeh, M., Canny, M. D., Kaur, N. & Latham, M. P. Mutation of Conserved Mre11 Residues Alter Protein Dynamics to Separate Nuclease Functions. J. Mol. Biol. 432, 3289–3308 (2020).

178.
Siegel, A. R. & Wemmer, D. E. Role of the σ54 Activator Interacting Domain in Bacterial Transcription Initiation. J. Mol. Biol. 428, 4669–4685 (2016).

179.
Waudby, C. A. et al. Rapid distinction of intracellular and extracellular proteins using NMR diffusion measurements. J. Am. Chem. Soc. 134, 11312–11315 (2012).

180.
Kubo, S. et al. A gel-encapsulated bioreactor system for NMR studies of protein-protein interactions in living mammalian cells. Angew. Chemie - Int. Ed. 52, 1208–1211 (2013).

181.
Zhao, Q. et al. Real-Time In-Cell NMR Reveals the Intracellular Modulation of GTP-Bound Levels of RAS. Cell Rep. 32, 108074 (2020).

182.
Serber, Z. et al. Methyl groups as probes for proteins and complexes in in-cell NMR experiments. J. Am. Chem. Soc. 126, 7119–7125 (2004).

183.
Latham, M. P. & Kay, L. E. Is Buffer a Good Proxy for a Crowded Cell-Like Environment? A Comparative NMR Study of Calmodulin Side-Chain Dynamics in Buffer and E. coli Lysate. PLoS One 7, e48226 (2012).

184.
Latham, M. P. & Kay, L. E. Probing non-specific interactions of Ca2+-calmodulin in E. coli lysate. J. Biomol. NMR 55, 239–247 (2013).

185.
Ikeya, T. et al. Improved in-cell structure determination of proteins at near-physiological concentration. Sci. Rep. 6, 38312 (2016).

186.
Ikeya, T. et al. NMR protein structure determination in living E. Coli cells using nonlinear sampling. Nat. Protoc. 5, 1051–1060 (2010).

187.
Sakakibara, D. et al. Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458, 102–105 (2009).

188.
Takahashi, H. et al. Utilization of methyl proton resonances in cross-saturation measurement for determining the interfaces of large protein-protein complexes. J. Biomol. NMR 34, 167–177 (2006).

189.
McShan, A. C. et al. Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle. Nat. Chem. Biol. 14, 811–820 (2018).

190.
Natarajan, K. et al. An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role. Nat. Commun. 8, 15260 (2017).

191.
Cassaignau, A. M. E. et al. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy. Nat. Protoc. 11, 1492–1507 (2016).

192.
Cabrita, L. D. et al. A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding. Nat. Struct. Mol. Biol. 23, 278–285 (2016).

193.
Deckert, A. et al. Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor. Proc. Natl. Acad. Sci. U. S. A. 113, 5012–5017 (2016).

194.
Lee, K., Kumar, E. A., Dalby, K. N. & Ghose, R. The role of calcium in the interaction between calmodulin and a minimal functional construct of eukaryotic elongation factor 2 kinase. Protein Sci. 28, 2089–2098 (2019).

195.
Nematollahi, L. A. et al. Flexible stoichiometry and asymmetry of the PIDDosome core complex by heteronuclear NMR spectroscopy and mass spectrometry. J. Mol. Biol. 427, 737–752 (2015).

196.
Kreishman-Deitrick, M. et al. NMR analyses of the activation of the Arp2/3 complex by neuronal Wiskott-Aldrich syndrome protein. Biochemistry 44, 15247–15256 (2005).

197.
Esposito, D. et al. Solution NMR Investigation of the CD95/FADD Homotypic Death Domain Complex Suggests Lack of Engagement of the CD95 C Terminus. Structure 18, 1378–1390 (2010).

198.
Güttler, T. et al. NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat. Struct. Mol. Biol. 17, 1367–1376 (2010).

199.
Chang, Y. G., Kuo, N. W., Tseng, R. & LiWang, A. Flexibility of the C-terminal, or CII, ring of KaiC governs the rhythm of the circadian clock of cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 108, 14431–14436 (2011).

200.
Chang, Y. G., Tseng, R., Kuo, N. W. & LiWang, A. Rhythmic ring-ring stacking drives the circadian oscillator clockwise. Proc. Natl. Acad. Sci. U. S. A. 109, 16847–16851 (2012).

201.
Dagil, L. et al. Interaction Between the a3 Region of Factor VIII and the TIL’E’ Domains of the von Willebrand Factor. Biophys. J. 117, 479–489 (2019).

202.
Trigo-Mourino, P., Thestrup, T., Griesbeck, O., Griesinger, C. & Becker, S. Dynamic tuning of FRET in a green fluorescent protein biosensor. Sci. Adv. 5, eaaw4988 (2019).

203.
Proudfoot, A., Frank, A. O., Frommlet, A. & Lingel, A. Selective Methyl Labeling of Proteins: Enabling Structural and Mechanistic Studies As Well As Drug Discovery Applications by Solution-State NMR. in Methods in Enzymology 614, 1–36 (Academic Press Inc., 2019).

204.
Müller-Hermes, C., Creutznacher, R. & Mallagaray, A. Complete assignment of Ala, Ile, LeuProS, Met and ValProS methyl groups of the protruding domain from human norovirus GII.4 Saga. Biomol. NMR Assign. 14, 123–130 (2020).

205.
Creutznacher, R. et al. Chemical-Shift Perturbations Reflect Bile Acid Binding to Norovirus Coat Protein: Recognition Comes in Different Flavors. ChemBioChem 21, 1007–1021 (2020).

206.
Strecker, C., Peters, H., Hackl, T., Peters, T. & Meyer, B. Fragment Growing to Design Optimized Inhibitors for Human Blood Group B Galactosyltransferase (GTB). ChemMedChem 14, 1336–1342 (2019).

207.
Flügge, F. & Peters, T. Insights into Allosteric Control of Human Blood Group A and B Glycosyltransferases from Dynamic NMR. ChemistryOpen 8, 760–769 (2019).

208.
Flügge, F. & Peters, T. Complete assignment of Ala, Ile, Leu, Met and Val methyl groups of human blood group A and B glycosyltransferases using lanthanide-induced pseudocontact shifts and methyl–methyl NOESY. J. Biomol. NMR 70, 245–259 (2018).

209.
Weissbach, S., Flügge, F. & Peters, T. Substrate Binding Drives Active-Site Closing of Human Blood Group B Galactosyltransferase as Revealed by Hot-Spot Labeling and NMR Spectroscopy Experiments. ChemBioChem 19, 970–978 (2018).

210.
Li, Y. et al. Functional Expression and Characterization of Human Myristoylated-Arf1 in Nanodisc Membrane Mimetics. Biochemistry 58, 1423–1431 (2019).

211.
Jean, N. L. et al. Elongated structure of the outer-membrane activator of peptidoglycan synthesis LpoA: Implications for PBP1A stimulation. Structure 22, 1047–1054 (2014).
