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Materials and Methods 

Plasmids and constructs The clpP1 (Uniprot: P9WPC5) and clpP2 (Uniprot: P9WPC3) genes 

from Mycobacterium tuberculosis and the clpP gene from S. aureus (Uniprot: A6QF76) were 

synthesized by GenScript (Piscataway, NJ, USA) and cloned into the NdeI and BamHI sites of 

pET24a+ (Novagen, Madison, WI, USA). A cleavable N-terminal His6-SUMO tag was 

introduced into all constructs via Gibson assembly. Point mutations were introduced using 

Quikchange site-directed mutagenesis (Agilent, Santa Clara, CA, USA).  

Protein expression and purification MtClpP1, MtClpP2, and SaClpP were expressed 

heterologously and purified as detailed in previous work (1). Briefly, transformed BL21(DE3) 

∆clpP::cat E. coli cells were grown in minimal M9 D2O media supplemented with 15NH4Cl and 

d7-glucose as the sole nitrogen and carbon sources, respectively. Cells were grown at 37 ˚C and 

protein overexpression was induced with 0.1 mM IPTG at OD600=1.0 and allowed to proceed for 

~18 hours at 18 ˚C. [U-2H; Ileδ1-13CH3; Leu,Val-13CH3/12CD3; Met-13CH3]-labeled (referred to a 

13CH3 ILVM-labeled in text) and Val/Leu-γ1/δ1(proR) samples were produced as described 

previously (1). For the production of samples for cryo-EM analysis, cells were grown in 

Lysogeny Broth (LB) media at 37 ˚C and induced at OD600=1 with 0.1 mM IPTG. Expression 

was allowed to proceed for 18 hours at 25 ˚C. Proteins were first purified using Ni-affinity 

chromatography. The Ni lysis/wash buffer contained 50 mM Tris, 300 mM KCl, 20 mM 

imidazole, and 10% glycerol adjusted to pH 7.0. The imidazole concentration was increased to 

500 mM in the Ni elution buffer. Because MtClpP2 tends to aggregate at high imidazole 

concentrations, elution from the NiNTA column was collected in a Falcon tube containing ~25 

mL of Ni lysis/wash buffer to immediately dilute the high imidazole concentration in the Ni 

elution buffer. This step was followed by cleavage of the SUMO tag using Ulp1 protease. This 
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mixture was concentrated using an Amicon Ultra-15 50K MWCO concentrator and subjected to 

size exclusion chromatography (SEC) on a Superdex 200 Increase 10/300 (GE Healthcare) 

column in SEC Buffer containing 50 mM imidazole, 100 mM KCl, 5 mM DTT adjusted to pH 

7.0. Protein concentrations were determined spectrophotometrically (GdnCl-denatured protein) 

using extinction coefficients obtained from ExPASy’s ProtParam web-based tool 

(https://web.expasy.org/protparam/). For NMR measurements and degradation assays, the 

samples were buffer exchanged into NMR Buffer containing 50 mM imidazole, 100 mM KCl, 1 

mM TCEP adjusted to pHmeasured 7.0 prepared in 99.9% D2O. 

Preparation of mixed MtClpP1P2 complexes for NMR MtClpP1 rings containing mixtures of 

WT and S98A protomers were prepared following a procedure described previously (1, 2). 

Briefly, pure [U-2H] WT and ILVM-labeled S98A MtClpP1 heptamers were purified separately 

and mixed to achieve a 95%:5% WT:S98A ratio. This protein mixture was concentrated to ~0.5 

mL and unfolded and diluted with the addition of unfolding buffer containing 100 mM KCl, 50 

mM imidazole, 6 M GdnCl, and 10 mM DTT at pH 7.0 to a final protein concentration of 500 

µM. The complexes were reconstituted by drop-wise addition into a refolding buffer containing 

100 mM KCl, 50 mM imidazole, 1 M arginine, 10 mM DTT, and 15% glycerol at pH 7.0 to a 

final GdnCl concentration of 300 µM. The refolded mixture was concentrated to ~1 mL using an 

Amicon Ultra-15 50K MWCO (Millipore) concentrator and then applied to a Superdex 200 

Increase 10/300 (GE) column in SEC buffer. The resultant MtClpP1 rings eluted in a manner 

identical to that of pure WT MtClpP1 and there was no protein in the void volume. MtClpP1 

fractions were pooled and mixed with a two-fold excess of [U-2H] WT MtClpP2, and allowed to 

react overnight with a ten-fold excess of benzyloxycarbonyl-Gly-Leu-Phe-chloromethyl ketone 

(abbreviated GLF-CMK throughout the manuscript) (New England Peptide Inc, Gardner, MA, 
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USA) in the presence of 4 mM Bz-LL. Following verification of complete GLF-CMK 

modification of MtClpP1 active sites by ESI-MS, Bz-LL was removed by buffer exchanging the 

mixture into NMR Buffer. 

NMR Spectroscopy All NMR measurements were performed at 18.8 T and 40 °C, using a 

Bruker AVANCE III HD spectrometer equipped with a cryogenically cooled x,y,z pulsed-field 

gradient triple-resonance probe. 1H-13C correlation spectra were recorded as HMQC datasets, 

exploiting a methyl-TROSY effect that is particularly beneficial for applications to high 

molecular weight proteins (3). Spectra were processed using the NMRPipe suite of programs (4), 

analyzed using scripts written in-house, and visualized using Ccpnmr (5). 

Methyl group assignment Over 90% of the Ile (17/17), Leu (14/18), Met (8/8), and Val (7/7) 

correlations in spectra of MtClpP1, 40 ˚C, were assigned by a combined mutagenesis and NOE-

based approach, as described previously (1, 6). 1H-13C HMQC spectra were recorded of the 

following MtClpP1 assignment mutants: M75L, M81L, M122L, I29V, I30V, I40V, I60V, I77V, 

I88V, I120V, I136V, I189V, V36I, V82I, V129I, V145I, V186I, V195I, L14M, L16M, L25M, 

L44M, L50M, L83M, L103M, and L126M. A methyl-TROSY based 3D NOE experiment (7) 

that records chemical shifts as 13C[i]-NOE-13C[j]-1H[j] was measured on an ILVM-labeled 

sample of apo WT MtClpP1 with an NOE mixing time of 250 ms. To extend assignments to the 

T and R states of MtClpP1P2, NOE experiments were also recorded on samples that contained 1 

mM ILVM-labeled MtClpP1 mixed with 1.2 mM [U-2H] MtClpP2 in the presence or absence of 

8 mM Bz-LL. The side chains of Leu in Bz-LL were uniformly deuterated to remove T1 noise. 

Stereospecific assignments of methyl groups of Leu and Val residues was obtained using the 

labeling approach described previously (8). 
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NMR data fitting Binding constants for the MtClpP1 and MtClpP2 interaction (with and without 

8 mM Bz-LL) were obtained by titrating [U-2H] MtClpP2 into an ILVM-labeled MtClpP1 

sample (50 µM in monomer concentration). The decrease in the intensities of cross-peaks 

derived from the unbound state and the concomitant increase in cross-peak intensities from the 

bound-state can be quantified and subsequently fit as a function of MtClpP2 concentrations to 

the following expressions, 

Fraction of bound MtClpP1	 =
(𝑃% + 𝑃' + 𝐾)) −	,(𝑃% + 𝑃' + 𝐾))' − 4𝑃%𝑃'

2𝑃%
 

Fraction of free MtClpP1	 = 1 −
(𝑃% + 𝑃' + 𝐾)) −	,(𝑃% + 𝑃' + 𝐾))' − 4𝑃%𝑃'

2𝑃%
 

where P1 and P2 are the total concentrations of MtClpP1 and MtClpP2 at each titration step, 

respectively, and Kd is dissociation constant. Peak intensities were extracted using the NMRPipe 

suite of programs (4). Intensities for a given residue obtained in this manner were subsequently 

normalized by the maximum peak intensity in the titration series, obtained either from the initial 

spectrum (no added MtClpP2) for fraction free MtClpP1 or from the final spectrum (maximum 

addition of MtClpP2) for fraction bound MtClpP1. This normalization procedure removes 

residue specific contributions to peak intensities, such as those derived from different transverse 

relaxation rates, so that a single effective binding curve can be generated by combining all the 

residues, as has been done in this work, both for the MtClpP2 and Bz-LL titrations. The analysis 

of peak intensities described here, valid when the exchange rate between conformers is much 

less than the chemical shift differences between the probes of each interconverting state (slow 

exchange), is to be distinguished from that associated with the case of fast exchange, where the 

titration of peak positions as a function of added ligand is quantified to obtain binding affinities. 

Accurate binding constants can be obtained by both methods so long as the exchange regime is 
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truly in the slow or fast limit; if this is not the case it is necessary to take into account the 

exchange kinetics (9). In this regard, we have attempted to measure exchange rates between R 

and T states at the midpoint of the Bz-LL titration (Fig. 4) using magnetization exchange based 

experiments, but exchange cross-peaks were not observed, indicating that in this case the 

exchange is indeed in the slow regime, and normalized intensities provide an accurate measure 

of fractional populations of each state. 

In the analysis of the MtClpP2 titration data 18 data points (9 points from each of the two 

profiles derived from intensities of the free and the bound peaks) were fit to the above equations 

to extract Kd using a script (available upon request) written in Python 3.8 that used the lmfit (v. 

0.9.14) package (10). The error in Kd was estimated using a Monte Carlo approach (11) whereby 

random errors in both protein concentrations (x axis of Fig. 1E and F) and relative populations of 

free and bound states (y axis of Fig. 1E and F) were added to the best-fit model to produce 1000 

synthetic data sets that were subsequently fit as per the experimental data. Errors in protein 

concentration were estimated from 5 repeat measurements; errors in the relative populations 

were calculated as the root-mean-squared deviation between experimental points and those 

generated with the best-fit model. The values derived from Monte Carlo repeats were fit to a 

normal distribution function to yield expectation values and standard deviations s. Final errors 

are reported as 2s in the extracted values (95% confidence interval). 

An extended MWC model that includes competitive binding of Bz-LL and substrate We begin 

by initially considering a binding model for a simplified system comprising a pair of rings, as for 

MtClpP1P2, but where each ring in turn contains of only a single binding site for activator 

(denoted as X) or substrate (Y). As described in the text, we assume that binding of X and Y is 

competitive (i.e., both bind to the same site) and that each ring is in the same state, either R or T. 
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We distinguish rings 1 and 2 by subscripts 1, 2, so that R1R2 denotes a complex where rings 1 

and 2 are both in the R state, for example. A number of equilibria immediately follow, 

    [S1] 

A similar set of equations exists for binding of X and Y to T1T2 that are obtained by replacing 

each R with T in Eq. [S1]. We now define a binding polynomial Q that is equal to the sum of the 

concentrations of all protein components, 

 

where R1XR2 is a complex with ligand X (Bz-LL) bound in ring 1, R1XR2Y is a complex with 

ligands X and Y (substrate) bound to rings 1 and 2, respectively, and so forth. Eq [S2] can be 

simplified using the first entry of Eq. [S1] to give,

 

 

  	

R1R2
⎯→⎯←⎯ T1T2 																													L =

[T1T2]
[R1R2]

R1R2 + X ⎯→⎯← ⎯⎯ R1XR2 																					KR1X

R1R2 + X ⎯→⎯← ⎯⎯ R1R2 X 																				KR2 X

R1R2 + 2X ⎯→⎯← ⎯⎯ R1XR2 X 															KR1X KR2 X

R1R2 +Y ⎯→⎯← ⎯⎯ R1YR2 																								KR1Y

R1R2 +Y ⎯→⎯← ⎯⎯ R1R2Y 																							KR2Y

R1R2 + 2Y ⎯→⎯← ⎯⎯ R1YR2Y 																			KR1Y KR2Y

R1R2 + X +Y ⎯→⎯← ⎯⎯ R1XR2Y 												KR1X KR2Y

R1R2 + X +Y ⎯→⎯← ⎯⎯ R1YR2 X 												KR1Y KR2 X

  	

Q = [R1R2]+ [R1XR2]+ [R1R2 X ]+ [R1XR2 X ]+ [R1YR2]+ [R1R2Y ]+ [R1YR2Y ]+ [R1XR2Y ]+ [R1YR2 X ]
				 + [T1T2]+ [T1XT2]+ [T1T2 X ]+ [T1XT2 X ]+ [T1YT2]+ [T1T2Y ]+ [T1YT2Y ]+ [T1XT2Y ]+ [T1YT2 X ]

				 = [R1R2]{1+ KR1X [X ]+ KR2 X [X ]+ KR1X KR2 X [X ]2 + KR1Y [Y ]+ KR2Y [Y ]+ KR1Y KR2Y [Y ]2 +
																								 + KR1X KR2Y [X ][Y ]+ KR1Y KR2 X [X ][Y ]}																																																																								[S2]

						 + [T1T2]{1+ KT1X [X ]+ KT 2 X [X ]+ KT1X KT 2 X [X ]2 + KT1Y [Y ]+ KT 2Y [Y ]+ KT1Y KT 2Y [Y ]2 +
																										 + KT1X KT 2Y [X ][Y ]+ KT1Y KT 2 X [X ][Y ]}
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                    [S3] 

The fraction of conformers where both rings are in the R state, fR, is given by the sum of the first 

9 terms of Eq. [S2], ( ) divided by the total concentration of 

protein, Q, 

                                           [S4]   

and similarly the fraction of conformers where both rings are in the T configuration, fT, is 

                 [S5] 

Assuming that the activity of the complex (A) is proportional to the average number of substrate 

molecules bound to R1, as discussed in the text, it follows that 

      [S6] 

where the constant of proportionality Vo is the activity measured under saturating amounts of Y 

(limit when KR1Y[Y]>>1), when [X]=0 and assuming all molecules are in the active R state. The 

power of the binding polynomial approach (12) that has been adopted here is that expressions 

like Eq [S6] can be readily derived directly from Q (or ) Consider the case where  is given 

as   

   [S7] 

  	

Q = [R1R2]{(1+ KR1X [X ]+ KR1Y [Y ])(1+ KR2 X [X ]+ KR2Y [Y ])
																		 + L(1+ KT1X [X ]+ KT1Y [Y ])(1+ KT 2 X [X ]+ KT 2Y [Y ])}

  [R1R2]+ [R1XR2]+ ...+ [R1YR2 X ]

  	

(1+ KR1X [X ]+ KR1Y [Y ])(1+ KR2 X [X ]+ KR2Y [Y ])
′Q

, 								 ′Q = Q
[R1R2]

  

L(1+ KT1X [X ]+ KT1Y [Y ])(1+ KT 2 X [X ]+ KT 2Y [Y ])
′Q

  	

A =Vo

1⋅[R1YR2]+1⋅[R1YR2 X ]+1⋅[R1YR2Y ]
Q

				 =
VoKR1Y [Y ](1+ KR2 X [X ]+ KR2Y [Y ])

′Q

 ′Q  ′Q

  ′Q = ′QR + L ′QT = ′QR1 ′QR2 + L ′QT1 ′QT 2
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where and  contain terms related only to the binding of X or Y to rings 1 and 2, 

respectively, and A  {R, T}, corresponding to the R or T state of a ring. In the case of the 

example here 

                                    [S8] 

and the average number of substrate molecules bound to the R state of a complex, R1R2, (both 

rings are in the R state) is given by (12) 

     [S9] 

while the average number of substrate molecules bound to R1 can be derived from the relation 

 to give the first term of Eq. [S9] which is the expression in Eq. [S6], neglecting Vo. 

The results of this section can be easily generalized to the case where each ring is made 

up of n protomers (n=7 for MtClpP1P2), rather than 1 considered to this point. This is achieved 

simply by noting that the binding of X and Y to each of the n protomers is independent so that the 

terms and  in the expressions above are to be replaced with  and , 

respectively, as described in reference (12). 

In this case, 

                   [S10] 

  ′QA1   ′QA2

∈

  

′QR1 = 1+ KR1X [X ]+ KR1Y [Y ]
′QR2 = 1+ KR2 X [X ]+ KR2Y [Y ]
′QT1 = 1+ KT1X [X ]+ KT1Y [Y ]
′QT 2 = 1+ KT 2 X [X ]+ KT 2Y [Y ]

  

[Y ]
′Q
∂ ′QR

∂Y
= [Y ]

′Q
{(1+ KR2 X [X ]+ KR2Y [Y ])KR1Y + (1+ KR1X [X ]+ KR1Y [Y ])KR2Y }

= [Y ]
′Q
{ ′QR2KR1Y + ′QR1KR2Y }

  

[Y ]
′Q

′QR2

∂ ′QR1

∂[Y ]

  ′QA1   ′QA2   ( ′QA1)7
  ( ′QA2 )7

  	

′Q ={(1+ KR1X [X ]+ KR1Y [Y ])n(1+ KR2 X [X ]+ KR2Y [Y ])n

																		 + L(1+ KT1X [X ]+ KT1Y [Y ])n(1+ KT 2 X [X ]+ KT 2Y [Y ])n}
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and fR and fT are given by  

fR =   [S11]  

and  

fT = ,                   [S12] 

respectively. Similarly, A can be expressed as  

                   [S13] 

where Vo is the maximal activity per subunit. As described in the text, we were not able to fit our 

functional assays using Eq. [S13]. However, the data were well fit when Vo was allowed to vary 

with [Y], that is Vo = Vo([Y]), which takes into account the decrease in A at high concentrations of 

substrate (substrate inhibition). Thus, in the fits illustrated in Fig. 5C, Vo([Y]) is floated for each 

[Y] (each panel). The plot of Fig. 5E shows Vo[Y] vs [Y] (circles) and a fit to the data using the 

function  (solid line), where Vmax is the maximum possible enzyme activity 

per subunit, assuming therefore that (i) all molecules are in the R state, (ii) [X]=0, and (iii) the 

absence of substrate inhibition (KI = 0), KI is the association constant for the binding of each of N 

molecules of Y to inhibitory sites on MtClpP1P2 and N is the Hill coefficient for this process, 

.            [S14] 

Eqs. [S11], [S12] and [S13] (where Vo = Vo([Y]) have been used to obtain the fits shown in Fig. 

4B and C of the main text, with a scaling factor included to weight the NMR data relative to the 

data from the functional assays to account for the larger amount of activity data and activity 

  	

(1+ KR1X [X ]+ KR1Y [Y ])n(1+ KR2 X [X ]+ KR2Y [Y ])n

′Q
, 								

  

L(1+ KT1X [X ]+ KT1Y [Y ])n(1+ KT 2 X [X ]+ KT 2Y [Y ])n

′Q

  
A =

nVoKR1Y [Y ](1+ KR1X [X ]+ KR1Y [Y ])n−1(1+ KR2 X [X ]+ KR2Y [Y ])n

′Q

  
Vo([Y ]) =

Vmax

1+ KI
N [Y ]N

  	ClpP1P2+ NY ⎯→⎯← ⎯⎯ ClpP1P2−YN 						KI
N
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values that can peak at approximately 30. Thus,  , where f was set 

to 14 (purely empirically). Indeed, we have tested f values from 0.1-25 and these have very little 

effect on the extracted parameters with –RTln(z) (simplest model, see text) ranging from -4.5 

kcal/mol – -4.6 kcal/mol; -3.4 kcal/mol – -3.6 kcal/mol; -7.2 kcal/mol – -7.6 kcal/mol for z = 

KR1X, KR1Y, and L. 

The average number of activator (Bz-LL = X) molecules that are bound to MtClpP1P2 

can be calculated as follows,  

                 [S15] 

where  is given by Eq [S10]. In a similar manner, the average number of activator (Bz-LL = 

X) molecules that are bound to the R configuration of the complex (i.e., both rings are in the R 

state) is calculated as,  

   .                      [S16] 

Finally, the average number of activator molecules that are bound to the MtClpP1 ring in the R 

configuration of the complex (green solid curves in Fig. 4B and C) is 

                    

[S17] 

A description of the fits, including the number of fitting parameters, is provided in subsequent 

sections.  

  
χ red ,Total

2 = f χ red ,NMR
2 + χ red ,Assays

2

  	

[X ]
′Q
∂ ′Q
∂X

= n[X ]
′Q

{(1+ KR1X [X ]+ KR1Y [Y ])n(1+ KR2 X [X ]+ KR2Y [Y ])n−1 KR2 X

																													 + (1+ KR1X [X ]+ KR1Y [Y ])n−1 KR1X (1+ KR2 X [X ]+ KR2Y [Y ])n

																													 + L[(1+ KT1X [X ]+ KT1Y [Y ])n(1+ KT 2 X [X ]+ KT 2Y [Y ])n−1 KT 2 X

																													 + (1+ KT1X [X ]+ KT1Y [Y ])n−1 KT1X (1+ KT 2 X [X ]+ KT 2Y [Y ])n]}

 ′Q

  	

[X ]
′Q
∂ ′QR

∂X
= n[X ]

′Q
{(1+ KR1X [X ]+ KR1Y [Y ])n(1+ KR2 X [X ]+ KR2Y [Y ])n−1 KR2 X

																													 + (1+ KR1X [X ]+ KR1Y [Y ])n−1 KR1X (1+ KR2 X [X ]+ KR2Y [Y ])n}

  

[X ]
′Q

′QR2 ∂ ′QR1

∂X
= n[X ]

′Q
{(1+ KR1X [X ]+ KR1Y [Y ])n−1 KR1X (1+ KR2 X [X ]+ KR2Y [Y ])n}
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Activity Assays 

Peptidase rate measurements The peptidase activity of MtClpP1P2 was measured at 40 ˚C with 

Acetyl-L-Pro-L-Lys-L-Met bearing a C-terminal fluorogenic 7-amino-4-methylcoumarin group 

(abbreviated PKM-AMC throughout the manuscript) as substrate. The reaction was followed 

with a Synergy Neo2 96-well microplate reader by taking a measurement every 21 seconds for 

60 minutes at λex: 355 nm, λem: 460 nm. For all activity response measurements the concentration 

(protomer) of MtClpP1 was 1 µM while the concentration of MtClpP2 (protomer) was 20 µM, 

ensuring that the fraction of MtClpP1 in complex with MtClpP2 does not change substantially as 

[Bz-LL] is varied (note the difference in Kd values when Bz-LL is added, Fig. 1E and F). To 

ensure maximum similarity with the NMR titrations and facilitate subsequent data fitting, all 

functional assays, except for those shown in Fig. 5, were performed using deuterated enzyme in 

100% D2O-based NMR buffer. Activities are derived from initial rates extracted and analyzed 

using a Python script written in-house (see below). Error bars correspond to one standard 

deviation derived from three repeat measurements. 

Combined analysis of NMR intensities and activity assays as a function of Bz-LL 

concentration (Fig. 4B-F) Peak intensities in 1H-13C HMQC spectra of MtClpP1P2, with 

ILVM-labelled MtClpP1 or MtClpP2, were quantified as a function of 11 Bz-LL concentrations 

(Fig. 4B) and activity profiles of MtClpP1P2 measured from initial rates of fluorescence change 

due to hydrolysis of the substrate PKM-AMC quantified with 11 Bz-LL concentrations and 8 

substrate concentrations. The NMR and activity data, a total of 132 data points, were jointly fit to 

a modified MWC model (Fig. 4D, described in SI) using Eqs. [S11]-[S13] with Vo([Y]) floated 

for each concentration of Y. This was accomplished using a protocol in which initial guesses for 
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parameters were derived by a grid search that explored values for the association constants 

between 10-4 M-1 and 104 M-1, between 10-2 A.U. and 106 A.U. for Vo[(Y)] (A.U. = µM PKM min-

1/µM MtClpP1P2) and between 10-2 and 106 for L. Each dimension was searched in 8 steps that 

were linear on the logarithmic scale. Once starting parameters were identified by this procedure a 

least squares fit of the data was performed using an in-house package written in Python 3.8 using 

a Levenberg-Marquardt search engine that is available within the lmfit (v. 0.9.14) package (10). 

The 8 extracted values of Vo([Y]) were subsequently fit to a Hill-model of substrate inhibition 

described above to obtain the association constant for substrate binding to the inhibitory sites in 

the complex. For the simplified model displayed in Fig. 4D (red box), a total of 11 parameters 

were fit, including KR1X, KR1Y, L, and eight Vo([Y]) values. When the data were fit to the full 

model (Fig. D), illustrated in Fig. S8, a total of 17 parameters were used, including all eight 

association constants, L, and eight Vo([Y]) values. Errors in the fitted parameters were estimated 

using a Monte Carlo approach (11) whereby random errors, calculated as the root-mean-squared 

deviation between experimental points and those generated with the best-fit model, were added 

to the best-fit model to produce 1500 synthetic data sets which were fit as per the experimental 

data. Initial guesses for the Monte Carlo runs were generated randomly. The values derived from 

Monte Carlo repeats were converted to a histogram, which was subsequently fit to a normal 

distribution function to yield expectation values and standard deviations s. Final errors are 

reported as 2s in the extracted values (95% confidence interval). All scripts are available upon 

request. 

Cryo-EM 

Sample preparation for cryo-EM All purified proteins were concentrated to ~20-30 mg/mL in 

buffer. Immediately before freezing, samples were mixed with 0.025 % (wt/vol) IGEPAL CA-
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630 (Sigma-Aldrich) to increase the proportion of protein complexes adopting side views on the 

grid. 2.5 μL of the sample mixtures were applied to nanofabricated holey gold grids (13–15) with 

a hole size of ~1-2 μm. Grids were blotted on both sides using a FEI Vitrobot mark III for 15 

seconds at 4 °C and ~100% relative humidity before freezing in a liquid ethane/propane mixture 

(16). 

Electron microscopy All MtClpP1P2 complexes were imaged with a Thermo Fisher Scientific 

Titan Krios G3 microscope operating at 300 kV and equipped with a FEI Falcon III DDD 

camera. Structures were calculated from counting mode movies consisting of 30 frames, 

obtained over a 60 second exposure with defocuses ranging from 0.7 to 2.0 μm. Movies were at a 

nominal magnification of 75000×, corresponding to a calibrated pixel size of 1.06 Å and with an 

exposure of 0.8 electrons/pixel/s, giving a total exposure of 43 electrons/Å2. For apo, ADEP-

bound, and GLF-CMK modified MtClpP1P1 2092, 725, and 1645 movies were collected 

respectively, using the microscope’s EPU software. 

EM image analysis Whole frame alignment was performed in cryoSPARC v2 (17) with the 

resulting averages of frames used for contrast transfer function (CTF) determination (18). 

Templates for particle selection were generated by 2D classification of manually selected 

particles. Particle images were extracted in 184´184-pixel boxes, and individual particle 

alignment and exposure weighting was performed within cryoSPARC v2 (17).  

Atomic model building and refinement To model MtClpP1P2 (S10), a single subunit of each of 

MtClpP1 and MtClpP2 of the Bz-LL bound crystal structure (PDBID: 5DZK) (19) was fit into 

the EM density map as rigid bodies using UCSF Chimera (20). For apo MtClpP1P2, Rosetta (21) 

was used to minimize the structure with C7 symmetry enforced, with iterative backbone 

rebuilding. The best scoring models were visually inspected, and the best fitting model was used 



 15 

for further analysis. For ADEP bound MtClpP1P2 a single pair of protomers, one from MtClpP1 

and one from MtClpP2 (apo structure) were used as a starting model for further refinement. The 

N-terminal domains were built in Coot (22), and the entire model relaxed with Rosetta enforcing 

C7 symmetry. The top scoring models were then used for further analysis. ADEP was modelled 

based on PDBID 6CFD, in Coot, and real space refined in PHENIX using ligand restraints built 

in PHENIX elbow (23). For GLF-CMK bound MtClpP1P2, MtClpP1 and MtClpP2 protomers 

from the Bz-LL bound crystal structure (PDBID: 5DZK) were rigidly docked into the density in 

UCSF Chimera. Restraints for the GLF-CMK ligand were generated in PHENIX elbow followed 

by real space refinement in PHENIX. Validation reports (Table 1) were prepared in PHENIX. 

Models were evaluated with Molprobity (24) and EMRinger (25). Figures were generated 

in UCSF Chimera (20) and UCSF ChimeraX (26), and colors chosen with ColorBrewer (27).  
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Figure S1. Effect of protein concentration on oligomeric state of (A) MtClpP1 (residues 7-200) 

as established by SEC. (B) SEC profile of MtClpP2 with native propeptide processing (residues 

13-214) measured in isolation (blue trace). Mixing with equimolar concentration of MtClpP1 

(residues 7-200) (green trace) leads to the formation of MtClpP1P2 complexes (purple trace). (C) 

As in (A) but for MtClpP2 (residues 16-214), with concentrations as indicated. In all panels 0.5 

mL of protein at the denoted concentration (monomer) was injected. (D) Peptidase activity 

assays on a pair of mixtures containing MtClpP2 (residues 13-214) (black bar) or MtClpP2 

(residues 16-214) (grey bar) performed in the presence of MtClpP1 (residues 7-200), 4 mM Bz-

LL, with 250 µM Suc-LY-AMC used as substrate. In both cases the (monomer) concentration of 

each of MtClpP1 and MtClpP2 is 1 µM. Error bars correspond to one standard deviation based 

on three measurements. 
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Figure S2. (A) Overlay of the Leu and Val regions of 1H-13C HMQC correlation maps of ILVM-

labeled MtClpP1 (green contour) and a mixture containing 50 µM ILVM-labeled MtClpP1 and 

100 µM [U-2H] MtClpP2 (purple contours), recorded at 40 °C, 18.8 T, with stereospecific 

assignments as indicated. (B) Methyl groups in MtClpP1 (red circles; MtClpP1 is ILVM-labeled) 

showing chemical shift changes as a result of the addition of [U-2H] MtClpP2 are mapped onto 

the structure of apo MtClpP1P2. (C) The dissociation constants for the binding of MtClpP1 and 
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MtClpP2, measured at 40 °C in the absence (top panel) and presence (bottom panel) of Bz-LL 

are listed, along with the distribution of values based on a Monte Carlo analysis (11) that 

included errors in both peak intensities and protein concentrations. The distributions are fitted to 

a Gaussian function (orange curve) and the errors reported as twice the standard deviation in Kd. 

These distributions show that the difference in measured affinities is outside the experimental 

error. 
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Figure S3. Representative electron micrographs and 2D classes of the MtClpP1P2 complexes in 

the (A and B) apo, (C and D) ADEP-bound, and (E and F) GLF-CMK bound forms of the 

enzyme. The number of particles used in each class average is indicted.  
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Figure S4. Fourier Shell Correlation (FSC) as a function of spatial resolution and orientation 

plots for MtClpP1P2 complexes in the (A and B) Apo, (C and D) ADEP-bound, and (E and F) 

GLF-CMK bound forms. Resolution values reported are for FSC=0.143. 
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Figure S5. Local resolution maps of MtClpP1P2 complexes in the (A) Apo, (B) ADEP-bound, 

and (C) GLF-CMK bound forms. Note that in the ADEP-bound state particles are ‘dimers’ of 

tetradecamers linked via the gates of the P2 ring. Example regions of models built into the 

experimental cryo-EM maps are also shown (D). The additional density above the MtClpP2 N-

terminal gates in (B) corresponds to a second MtClpP2 ring that results from dimerization of the 

complex upon addition of ADEP (see Fig. S10). 
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Figure S6. (A) Density map for the apo MtClpP1P2 complex. Single MtClpP1 and MtClpP2 

protomers in the complex are coloured green and blue, respectively. (B) Density for a single 

protomer pair is shown along with an unsharpened map for the flexible handle region. 
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Figure S7. Activity response curves measured as a function of Bz-LL concentration using 250 

µM PKM-AMC as substrate for WT MtClpP1P2 (black curve) and MtClpP1(S98A)P2 (red 

curve). The shift in the shape of the activity curve to lower Bz-LL concentrations for 

MtClpP1(S98A)P2 is due to the S98A mutation in MtClpP1 (see Discussion). 

Re
la

tiv
e 

ac
tv

ity

WT MtClpP1P2

MtClpP1(S98A)P2



 24 

 

Figure S8. Combined fits of (A) NMR peak intensities and (B) MtClpP1P2 activity as a function 

of the concentration of Bz-LL. The modified MWC model illustrated in Fig. 4D has been used 

which includes binding of Bz-LL and substrate to the T and R states of MtClpP1 and MtClpP2 of 

the complex. 
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Figure S9. Intact protein mass spectra of each ring of MtClpP1P2 partially modified by GLF-

CMK. The 10+ charge state for each of (A) MtClpP1 and (B) MtClpP2 along with expected 

positions of the unmodified and GLF-CMK modified protein peaks are indicated with arrows. 

The fraction of active sites modified (FM) is indicated for each panel. 
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Figure S10. ADEP bound MtClpP2 gates and density. (A) Density map for the MtClpP1P2 

complex bound to ADEP. Additional density was present above the MtClpP2 N-terminal gates 

corresponding to a second MtClpP2 ring that results from dimerization of the complex upon 

addition of ADEP. Single MtClpP1 and MtClpP2 protomers are coloured teal and purple, 

respectively. Gate density for two protomers of the second P2 ring are coloured yellow. (B) 

Magnified view of the MtClpP2:MtClpP2 interface mediated by the N-terminal gates. (C) Model 

in map fit for a single N-terminal gate. (D) Table summarizing gate conformations in all the 

states observed for MtClpP1P2. 
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Table 1. Cryo-EM data acquisition, processing, atomic model statistics, and map/model 
depositions.  
A. Cryo-EM data acquisition and image processing. 
Data Collection 
Electron Microscope Titan Krios 
Camera Falcon 3EC 
Voltage (kV) 300 
Nominal Magnification 75,000 
Calibrated physical pixel size 
(Å) 

1.06  

Total exposure (e/Å2) 42.7  
Exposure rate (e/pixel/s) 0.8  
Number of frames 30 
Defocus range (μm) 0.7 to 2.0 
Image Processing   
 MtClpP1P2 APO MtClpP1P2 + ADEP MtClpP1P2 + GLF-CMK 
Motion correction software cryoSPARC v2 cryoSPARC v2 cryoSPARC v2 
CTF estimation software cryoSPARC v2 cryoSPARC v2 cryoSPARC v2 
Particle selection software cryoSPARC v2 cryoSPARC v2 cryoSPARC v2 
Micrographs used 2,092 725 1645 
Particle images selected 612,408 366,129 257,060 
3D map classification and 
refinement software 

cryoSPARC v2 cryoSPARC v2 cryoSPARC v2 

 
B. Map and model statistics. 
EM maps MtClpP1P2 APO MtClpP1P2 + ADEP MtClpP1P2 + GLF-CMK 
Particle images contributing 
to maps  

373,064 192,430 143,748 

Applied symmetry  C7 C7 C7 
Applied B-factor (Å2) -191.8 -168.6 -217.4 
Global resolution (FSC = 
0.143, Å)  

3.1 3.1 3.5 

Model Building    
Modeling software Coot, Phenix, Rosetta 
Number of residues 2,513 2,618 2,506 
RMS bond length (Å)  0.0196 0.0202 0.0049 
RMS bond angle (º) 1.84 1.70 1.08 
Ramachandaran outliers (%) 0.85 0.54 0 
Ramachandran favoured (%) 95.77 96.22 98.31 
Rotamer outliers 0 0 0 
C-beta deviations 0 0 0 
Clashscore 0.26 2.66 1.16 
MolProbity score 0.89 1.31 0.83 
EMRinger score 4.3 3.7 2.41 
Ligand N/A ADEP-7 GLF-CMK 
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C. Residues excluded in atomic models. 

ClpX Protomer MtClpP1P2 APO MtClpP1P2 + ADEP MtClpP1P2 + GLF-CMK 
ClpP1 1-15,193-200 1-15,193-200 1-15,193-200 
ClpP2 1-30, 211-214 1-15, 211-214 1-31, 211-214 

 
 
 
D. Deposited maps and associated coordinate files. 
Maps EMDB code Associated PDB ID 
MtClpP1P2 APO EMD-21197 6VGK 
MtClpP1P2 + ADEP EMD-21198 6VGN 
MtClpP1P2 + GLF-CMK EMD-21199 6VGQ 
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