JOURNAL OF MAGNETIC RESONANCE 95, 536-547 (1991)

The Effects of Dipolar Cross Correlation on *C Methyl-Carbon T,
T,, and NOE Measurements in Macromolecules

LEWIS E. KAY* AND D. A. TORCHIA T

* Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, and
+ Bone Research Branch, National Institute of Dental Research, National Institutes of Health,
Bethesda, Maryland 20892

Received February 19, 1991; revised May 31, 1991

The effects of dipolar cross correlation on '*C T, T, and NOE values are calculated
for methyl groups attached to macromolecules. Using the Woessner model to describe
methyl-group internal dynamics, it is found that for macromolecules with tumbling times
between 5 and 20 ns and fast internal methyl rotation characterized by a correlation time
between 15 and 65 ps, the recovery of longitudinal magnetization differs by less than 10%
from that of the case with no cross correlation. Therefore for a large range of values of 7,
and 7., cross-correlation effects on longitudinal relaxation are small, despite the fact that
reorientation is highly anisotropic. In contrast, for '*C spin-spin relaxation the effects of
dipolar cross correlation are significant for all values of 7, and 7. in the range examined
(2 ns < 1, <40 ns, 0 ps < 7. < 100 ps), and differences in relaxation rates by as much
as a factor of 3.0 relative to predicted values based on the neglect of cross correlation are
obtained for an isolated AX; spin system attached to a macromolecule. The effect of cross
correlation is calculated to change NOE values by no more than 6-7% in the range examined.
The influence of neighboring 'H spins on '*C relaxation is assessed by including random-
field effects in the calculations. While the effects of cross correlation are attenuated, *C
longitudinal and transverse relaxation rates can, under certain conditions, still be substan-
tially different from rates obtained in the absence of cross correlation. Although a quan-
titative description of cross-correlation effects on 3C relaxation depends on the details of
methyl-group internal dynamics, the results derived here using the Woessner model are
qualitatively the same as results obtained for different descriptions of the methyl-carbon
mternal motions. © 1991 Academic Press, Inc.

NMR is a powerful technique for obtaining information on internal dynamics in
proteins. The measurement of relaxation rates of heteronuclei (A = *C or ’N) directly
bonded to protons is particularly useful for obtaining motional information since the
relaxation of these nuclei is governed predominately by dipolar interactions with di-
rectly bonded protons. Other relaxation mechanisms such as chemical-shift anisotropy
(CSA) and spin-rotation often make small contributions to the heteronuclear relax-
ation (). Moreover, the interpretation of such relaxation rates requires only that the
'H-A bond length be known and, in general, does not require a knowledge of the
overall structure of the molecule in question. The availability of nearly complete
heteroatom assignments of spectra of uniformly '3C- and ’N-labeled proteins, due to
recently developed double- and triple-resonance 3D (2-6) and 4D NMR (7, 8) tech-
niques, has provided access to a large number of probes of internal dynamics throughout
the entire molecule. This advance, coupled with 2D pulse schemes for measuring
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heteroatom T, T, (9-11), and NOE:s ( 11) with high sensitivity and resolution, allows
for the extraction of a large number of highly accurate relaxation rates.

The simplest and most common approach to the analysis of heteroatom relaxation
rates is to assume that the interactions can be described in a pairwise fashion. In this
way, for example, the dipolar relaxation of a carbon spin in an AX; spin system is
the sum of each 'H-~'3C contribution. However, this simplification neglects the fact
that the motion of the three '"H-'*C interatomic vectors is correlated and studies by
Werbelow and Marshall (/2), the Volds (/3) and Werbelow and Grant (/4) have
shown that cross-correlation effects can be significant. A recent '*C NMR relaxation
study of leucine residues of the protein staphylococcal nuclease (SNase, MW 17 kDa)
labeled with '°C in the C? positions indicated that in almost all of the cases examined,
the decay of transverse magnetization was not monoexponential (/5). This result has
prompted us to examine the effects of dipolar cross correlation on measured T, T,
and NOE values for AX; spin systems attached to molecules tumbling in the limit
(wTm)? > 1, where w and 7., are the spectrometer frequency and overall molecular
tumbling correlation time, respectively. While the effects of cross correlation on *C
T, and NOE measurements (14) and on '*C T, measurements (/6) have been ex-
amined in the literature for AX; spin systems attached to molecules tumbling in the
extreme narrowing regime [(w7y,)? < 1], to our knowledge studies of these effects in
macromolecular systems [(wr,)? > 1] have not appeared.

The equations describing the effects of dipolar cross correlation on °C T, and NOE
measurements in AX; spin systems are given in (14) (see Egs. [9.30] and [9.34)).
The influence of cross correlation on measured *C transverse relaxation in AX; spin
systems attached to macromolecules has not been described, however. Such a descrip-
tion is most easily accomplished using Redfield theory (17). Using this formalism,
the relaxation of elements of the density matrix corresponding to transverse A mag-
netization is given by

dp/dt = Rp, {1]

where p is a vector containing all density elements corresponding to transverse A
magnetization and R is a Redfield relaxation matrix whose dipolar contribution from
various pairs of interacting spins ij, kI is given by (17)

R v = 2 {(=1)"8n, -2 T e ) ) TH (i) Y | T3(KD) | o)

mn

= Baw 2 (—1)"0 SR @arg) " | TE(I)1BY(BI T2(KD) )

8

= Buar 2 (—1)7 8 S R @erg) {al TRGNIBYBITH(KD [y } . [2]
8

InEq.[2], a, &, &, &”, and 8 denote the various spin states for an AX spin system
(18), T4(ij) are the components of the second-order dipolar spin tensor with n or m
running from —2 to 2, and &, is a Dirac function equal to 0 if « # o' and equal to
1 otherwise. The Ji(w,,) are the second-order spherical harmonic spectral densities
evaluated at a frequency given by w,, = (E, — E,)/ F. In the discussion that follows,
Ji(w) = J9(w). Using the formalism of Lipari and Szabo (19, 20) we can express
Jiu(w) in a “model-independent” manner as
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Jiaw) = 1/(47) §6u { SEH D7,/ [1 + (w0r,)°]
+ [Py(uy-wy) — ST 7 /{1 + (wr)?]}, (3]

where we have included the effects of cross correlation. In Eq. [3], §; =
(6m/5)%5(viv;h/rd), S {4 is an order parameter characterizing the internal motions,
Tm is the overall molecular tumbling correlation time, 7' = 7! + 7_!, where 7. is
the effective correlation time for the internal motions, uj; is a unit vector describing
the orientation of the interaction vector ij in a reference frame that is rigidly attached
to the macromolecule, and P, is a second-order Legendre polynomial. It is straight-
forward to evaluate P,(u; - uy) in terms of (6;;, ¢;) and (8, ¢x/), the polar angles of

u; and uy,, respectively, by the addition theorem for spherical harmonics (27) to give

Py(u;+uy) = 3(3 cos®d; — 1)(3 cos®, — 1) + $ sin 26, sin 20,,cos(dy; — b))
+ 3 sin?6,;sin’0,c08 2(¢; — du).  [4]

If the motions of the vectors u; and w,; are axially symmetric then S?('j’“) can be

expressed as
SHUKD = Py(cos B;) Py (cos Bi), [5]

where Py(cos 8;) = (3 cos?8; — 1)/2 and B, is the angle between w,; and the axis of
symmetry. Note that for the case where ij = kl (autocorrelation terms) and where
vector ij executes threefold jumps about some symmetry axis, Eq. [3] reduces to the
Woessner model (22), where 7. is the correlation time describing the three-site jump.

Equation [1] can be solved numerically using standard matrix techniques to give
(14)

p(1) = Qexp(—Q7'RQ1Q'p(0), [6]

where Q is a matrix of eigenvectors of R, Q™! is the inverse of matrix Q, and p(0)
contains the values of the transverse A elements of the density matrix at the outset of
the relaxation period. Finally, '3C transverse relaxation is evaluated according to

Axpy o Tr{p(t)-Axgy}s [7]

where 4, is the x(y) component of *C magnetization written in matrix form and
Tr denotes the trace of the matrix p(£)- A, ().

In the limit that J(0) spectral-density terms dominate the transverse relaxation, a
simple analytical solution to Eq. [1] is readily derived,

dAo:jjtT(t) = {—2Janc(0) — 4Jcucu(0) } Aour(?)
dA 4
_2(’) - 1—2.IAHC(0) + §JCHCH(0)}AINU>, [8]

where Aoyt is the intensity of the two outer lines of the *C quartet, Ay is the intensity
of the inner two lines, Jauc(0) is the autocorrelation spectral-density function (4,; =
8, = 109.5°, ¢;; — ¢y = 0° in Eq. [4]) for the internuclear 'H-'3C vector evaluated
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at zero frequency, and Jcoycu(0) is the three-spin cross-correlation spectral-density
function where two distinct 'H methyl spins share the same '3C spin (8, = 6, = 109.5°,
#ij — ¢ = 120° in Eq. [4]). Equation [ 8] describes the relaxation of the '*C multiplet
components of a methyl group that would be measured using a standard CPMG (23,
24) pulse sequence. We have assumed that the delays between successive application
of 180° pulses are much shorter than 1/(2Jxu), where Jxy is the one-bond 'H-13C
coupling constant, so that the effects of scalar relaxation of the second kind (/1) are
insignificant. The solution to Eq. [8] is

Aout(t) = Aovr(0) exp{[~2Janc(0) — 4Jcnucn(0)11}
Ar(1) = 3 4out(0) exp { [~2Janc(0) + $Jcucn(0)1}
A1) = Aour(t) + An(t)
A:(0){3 exp[(—2Janc(0) + $Jcucn(0))1]
+ 5 exp[(—2Jauc(0) — 4Jeuen(ON]}, 9]

where 4,(t) is the x component of A (1*C) magnetization. Thus, in the limit that
(wTm)? > 1, the relaxation of 4,(¢) is biexponential because the outer lines relax more
rapidly than the inner lines as a consequence of dipolar cross correlation. Note, however,
that for short ¢ (l < {2JAHC(0) - %JCHCH(O)}s < {2JAHC(O) + 4JCHCH(0)})> the
relaxation is independent of the effects of cross correlation.

A qualitative appreciation of the effects of cross correlation on the decay of longi-
tudinal and transverse magnetization can be obtained by examining Eq. [3] in more
detail. Substitution of Eq. [4] into Eq. [3] and using the Woessner model to describe
internal dynamics give

Jiw) = 1/(47) 6 {[(3 cos?B ~ 1)2/4]7,,/[1 + (wr,)?]
+ [ sin?2B cos(¢; — dw) + 3 sin*8 cos 2(d; ~ ¢i)]7/[1 + (wr)?1}, [10]

where £ is the angle between vectors u; or uy, and the symmetry axis of the methyl
group and all other symbols are defined as for Eq. [3]. Note that for the case of a
methyl group with (¢; — ¢) = 0° (if ij = kI) and with (¢; — ¢x) = 120° (if ij # k)
it is possible to express the auto (cross) spectral-density functions as a weighted sum
(difference) of slow- and fast-motion contributions via

Jiw) =a + 2b
Jijk/(w)za“b (ij # k), [11]

where a = 1/(4x) §$u {[(3 cos?8 — 1)?/4]7m/[1 + (wr)?]} and b = 1/(47) &8
X {[3 sin?2B8 + § sin*B17/[1 + (wr)?]}.
Equation [11] shows that since a, b = 0

Jiifw) = Jgu(w) (i # k), [12]

with equality of auto- and cross-spectral-density terms occurring only in the limit that
7e = 0. In this limit and assuming further that (wr,)* < 1, Werbelow and Grant (714)
showed that the effects of cross-correlation on methyl-carbon longitudinal relaxation

]
i
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are substantial. On the basis of their calculations one might suppose that cross cor-
relation will significantly affect longitudinal methyl-carbon relaxation in macromol-
ecules where reorientation is highly anisotropic, i.e., 7., > 7.. However, this expectation
is not in general fullfilled for methyl-carbon relaxation in macromolecules for the
following reason. In the macromolecular limit, (w7, )2 > 1, and assuming further that
(wre)? < 1, it is easily shown that Jj;,(w) (ij # k/) vanishes for certain values of the
correlation times. This occurs for methyl-group cross-spectral-density terms Jegcu(w)
when

TeTm ~ 1/(4w?). [13]

We note that if 7.7, > 1/(4w?) cross- and auto-spectral-density terms are of opposite
sign (cross-spectral-density terms are negative) while both cross- and auto-spectral-
density terms are positive for 7.rm < 1/(4w?). When Eq. [13] is approximately satisfied
the cross-spectral densities are much smaller than the auto-spectral densities and cross-
correlation effects on longitudinal relaxation are negligible, despite the fact that re-
orientation is highly anisotropic. In contrast, for 7. values such that 7. < [1/(4w?r,,)],
(wTm)? > 1, (wre)? < 1, the decay of longitudinal magnetization is highly nonexpo-
nential since in this limit the ratio of cross- to auto-spectral densities is maximal. In
the limit that 7. > [1/(4w?ry)] and (wrm)? > 1, (w7e)? < 1, Japc(w) = —2Jcucu(w),
and the effects of cross correlation are significant as well.

The situation is somewhat more complicated than that described above, since the
effects of cross correlation depend upon the sum of cross-spectral-density terms eval-
uated at several different frequencies. A quantitative picture of such effects can be
obtained by realizing that the limiting slope at ¢ = 0 of the recovery of longitudinal
or transverse magnetization is equal to the slope in the absence of cross correlation
while the limiting slope at ¢ = oo can be significantly smaller due to the influence of
cross correlation. Therefore, a measure of the effect of cross correlation on methyl
relaxation is the value of the ratio of the slopes of the relaxation curves at t = 0 and
t = oo. This ratio is calculated and plotted in Fig. 1A with internal methyl-group
dynamics described by the Woessner model (22). For macromolecules with tumbling
times between 5 and 20 ns and fast internal methyl rotation characterized by a cor-
relation time between 15 and 65 ps, the slope of the recovery of longitudinal mag-
netization at long relaxation times (¢ = oo ) differs by less than 10% from that in the
case with no cross correlation. For shorter recovery periods the deviation is smaller.
For methyl correlation times faster than 10 ps the effects of cross correlation become
more severe.

Understanding the influence of cross correlation on the transverse relaxation rate
for methyl carbons in macromolecules is more straightforward than that for longi-
tudinal relaxation since in the former case the dominant contribution to relaxation
originates from spectral-density terms of the form

Jia(0) = 1/(4w) §i 5 Pa(cos Bi) P (cos Bi) Tm, [14]

where axially symmetric internal motion has been assumed. Note that both auto- and
cross-spectral-density terms are equal for all values of 7, and 7. provided that (wry)?
> 1 and (wr.)? < 1. There is no sign reversal of cross-spectral-density functions and
hence the ratio of cross- to auto-spectral-density terms is maximal. Not surprisingly
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FiG. 1. Contour plots showing the effects of dipolar cross correlation on the relaxation of longitudinal
(A) and transverse (B) methyl-carbon magnetization. The Woessner model (22) is used to describe the
methyl-group dynamics. Each contour indicates the limiting ratio of the slopes (evaluated at = 0 and at ¢
= o) of the relaxation curves calculated with cross-correlation effects. The slope ratio associated with each
contour line is indicated by the number adjacent to each line.

the effects of cross correlation are significant. This situation is very similar to results
obtained for longitudinal relaxation in the limit that ., — 0. Figure 1B shows the
effects of cross correlation on transverse !*C methyl-group relaxation for methyl-group
motion described by the Woessner model. As is illustrated, the effects on transverse
relaxation are severe for the range of 7, and 7. values considered.

Figure 2 illustrates the influence of cross correlation on the recovery of longitudinal
and transverse magnetization as well as on the NOE for particular values of 7, and
7.. For simplicity, the Woessner model has been used with 7, equal to the three-site
jump correlation time and S%(U’k’) given by Eq. [5]. For 7, = 10 ns and 7. = 25 ps
it is clear that the effects on longitudinal magnetization recovery are small. In this
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FIG. 2. The effects of dipolar cross correlation on the T, T, and NOE profiles of a '*C spin in an AX;

spin system ( methyl group) attached to a macromolecule for select values of 7., and 7.. The Woessner model

is used to describe methyl-group dynamics. The reduced variable, ¢/, is equal to t/ T, ,,, where T is the
relaxation time in the absence of cross correlation or random fields. (A) T, recovery of '*C magnetization
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case, the initial and final relaxation rates differ by only 5%, while for r,, = 5 ns and
T. = 25 ps the curves derived with and without dipolar cross-correlation effects are
superimposable. The effects of cross correlation on '3C spin-spin relaxation rates are
dramatic, as Fig. 2B illustrates. In the particular case where values of 7, = 10 ns and
7e = 25 ps are chosen, the initial and final decay rates of transverse magnetization
differ by a factor of 2.4. The effect of cross correlation on the NOE is indicated in Fig.
2C. For 7, = 10 ns and for NOE values less than ~2.6, neglect of cross correlation
will result in an error in 7. of at most 5 ps. However, for NOE values larger than 2.6,
neglect of cross correlation can result in significant errors in the estimation of 7.. As
Fig. 2C illustrates, cross correlation does not change the absolute intensity of the NOE
appreciably. For 0 ps < 7. < 100 ps and 2 ns < 1, < 40 ns the intensity change is
never in excess of 6-7%.

The results discussed above have been derived assuming isolated AX; spin systems.
In tightly packed macromolecules, such as proteins, this simplification is clearly not
valid. For example, in the protein SNase, there are, on average, close to 100 proton
spins within 4 A of the leucine C® methyl protons ( 25). In order to explore the effects
that dipolar interactions between the methyl protons and neighboring 'H spins have
on cross correlation we have included 'H random-field effects in the calculation (14).
While the use of random fields does not rigorously model the effects of dipolar inter-
actions between spins ( 13), it nevertheless provides a framework in which a qualitative
estimate of the influence of neighboring spins on '*C relaxation can be obtained.
Figure 3A illustrates the contribution of random-field terms of differing sizes to the
transverse relaxation of '>C magnetization in an AX; spin system for 7., = 10 ns and
1. = 25 ps using the Woessner model to describe the methyl-group internal dynamics.
As can be seen, random-field contributions due to “external” 'H spins decrease the
effects of cross correlation. This is true for 7T; and NOE values as well, where for the
values of 7, and 7. used in Fig. 3A, the curves corresponding to the situation with
and without cross correlation become nearly superimposable (data not shown). We
have also examined the influence of the surrounding 'H spins by explicitly including
a fourth 'H in the calculations at a distance of 1.8 A from the methyl protons. As
expected, the effects of cross correlation decrease and for 7, = 10 ns and 7. = 25 ps
the ratio of initial to final slopes of transverse magnetization decay (data not shown)
decreases from 2.4 in the absence of the fourth 'H spin to 2.1 in its presence.

The extent to which cross correlation affects '*C relaxation is also a function of the
motional properties of the '*C spin. For example, consider a model in which, in addition

(—In[1/2(1L ~ A4,/ 45)]) vs ¢, where 4, and A4, are '3C z magnetization and equilibrium magnetization,
respectively, with full 'H decoupling and with (solid lines) and without (dashed line ) dipolar cross correlation.
The solid curve closest to the curve describing relaxation in the absence of dipolar cross correlation (dashed
line) was obtained with v, = 10 ns followed by curves obtained with values of 7, equal to 2.5 and 15 ns.
The curve generated with 7, = 5 ns can be superimposed on the dashed line. The value of 7, was set to 25
ps in all cases. All random-field terms were set to zero. (B) T, decay of '*C magnetization (—In{A4,/4,] vs
t') with (solid lines) and without (dashed line) cross correlation calculated in the absence of 'H decoupling.
Values of r, = 2.5 ns (a), 5.0 ns (b), 10 ns{c), and 15 ns (d) were chosen with 7, set to 25 ps in all cases.
Random-field terms were set to zero. (C) NOE vs 7, for the case with (solid lines) and without (dashed
line) cross correlation. Value of 7, = 2.5 ns (a), Sns (b), 10 ns (c), and 15 ns (d) were chosen. Random-
field effects were neglected.
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to fast methyl rotation, an additional motion on a time scale intermediate between
methyl rotation and the overall molecular tumbling is included. This is a model that
might be used to describe the dynamics of a methyl group attached to a long side
chain. For this case the spectral-density function of Clore et al. (26) is modified to

give

T @) = 1/(47) $yfia{ S2 P07, [[1 + (@rn)?] + [Pa(u+ wig) = ST )7,/
[1+ (wr)?] + SEHNL = 7o/ [1 + (0r2)*]},  [15]

where and S; are order parameters describing the fast and slow methyl internal
motions, respectively, $2 = S2@A).§2 71V = 7ol 4 o7 ool =21 4 5=l 4 oand 1,
are the correlation times for the rotation about the methyl symmetry axis and the
slower reorientation of the symmetry axis, respectively, and all other symbols are
defined as for Eq. [3]. For the case of a methyl group executing three-site jumps about

a symmetry axis,

(kD
S

SRR = P, (cos ;) Py(cos By), [16]

where §;; and 8y, are defined as before.

Figure 3B shows the effects of cross correlation and random fields on !*C transverse
relaxation in an AX; spin system using this new model to describe internal motion
and for which values of 7, = 10 s, 7¢ = 25 ps, 7s = 0.5 ns, and S? = 0.5 are chosen.
[ The value of St is readily calculated from Eq. [16] assuming tetrahedral geometry
so that, for example, for spectral-density terms Jauc(w) and Jepcu(w), 8; = Bu
= 109.5° and Szf("’kl) = (.111]. Although cross correlation still has a significant effect
on the rate of decay of transverse magnetization of an isolated AX; spin system, the
ratio of the initial to the final decay rates has decreased from 2.4 for the Woessner
model (7, = 10 ns and 7, = 25 ps) to 1.9. Additionally, random fields attenuate the
effects of cross correlation more significantly than in the Woessner model, as the figure
illustrates.

In addition to dipolar interactions involving methyl protons and neighboring spins,
competing relaxation mechanisms, such as CSA, spin-rotation, and 'H-"'3C dipolar
interactions involving nonbonded protons can also decrease the influence of dipolar
cross correlation. However, for methyl groups in proteins the effects of CSA are small;
assuming an axially symmetric chemical-shift tensor with Aé = 25 ppm (27) and
using the Woessner model with 7, = 10 ns and 7, = 30 ps, the contributions of CSA
to T, T2, and the NOE at a frequency of 500 MHz are less than 2.5% of the contri-
bution from the 'H-"'3C intra-methyl-group dipolar interaction. An estimate of the
influence of spin-rotation on the relaxation of *C methyl spins in macromolecules
can be obtained from '*C relaxation studies of the methyl group in toluene measured
at temperatures between 200 and 330 K (28). A contribution of no more than 0.05
s ! to the overall '*C methyl-group longitudinal relaxation rate is obtained from spin—
rotation. This value is larger than the contribution expected in proteins where the
diffusion of the methyl group is considerably slower than the free diffusion experienced
by the methyl group of toluene (29). Thus for '*C relaxation in macromolecules a
contribution of at most a few percent is expected from this relaxation mechanism.
Finally, '*C dipolar interactions with remote 'H spins are also likely to be negligible
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F1G. 3. The effects of 'H random-field terms on '*C transverse relaxation in AX; spin systems attached
to macromolecules. Only auto-random-field terms are considered. In a-d the effects of dipolar cross correlation
are included. (a) Random-field terms set to zero. (b) j(«) = 5J(w), where j(w) is the 'H random-field
spectral-density term and J(w) is the autocorrelation term arising from 'H-'H methyl-group dipolar inter-
actions. (¢) j(w) = 20J(w). (d) j(w) = 50J(w). (¢) Random terms set to zero and the effects of cross
correlation are neglected. (A ) The Woessner model { 22) is used to describe the methyl dynamics with values
for 7, and 7, of 10 ns and 25 ps, respectively. (B) The model described in Eq. [10] is used with 7, = 10
ns, ¢ = 25 ps, 7, = 0.5 ns, and §? = 0.5. The reduced time variable ¢’ is defined as in Fig. 2.

since for methyl groups the dominant '*C relaxation mechanism is provided by the
three 'H spins located at ~1.09 A from the 1>C nucleus.

Experimentally we have observed the effects of cross correlation on the decay of
13C transverse magnetization of methyl groups attached to leucine residues in the
protein SNase. It was found that the initial transverse relaxation rate was 10-20%
faster than the relaxation rate after '*C magnetization had decayed to ~20% of its
original value. These experimental results indicate that, at least in this case, the effects
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of cross correlation are somewhat smaller than theoretical predictions described here
on the basis of simple models for the internal methyl dynamics. Nevertheless, it is
clear that '"H-"3C dipolar cross correlations can have important implications for the
interpretation of 7', and T, values within the framework of a specific motional model.
It is therefore critical that such values be obtained from the initial decay of magneti-
zation where the influence of cross correlation is smallest and that the size of
such effects be estimated by comparing the initial decay rate with the rate at much
longer times.

In summary, in this paper we have considered the effects of dipolar cross correlation
on measured >C T, T, and NOE values in AX; spin systems attached to macro-
molecules. For 5 ns < 7., < 20 ns, 15 ps < 7. < 65 ps, the contributions to 7', values
are likely to be small, especially for methyl groups buried in the molecule and thus
in close proximity to a large number of 'H spins. However, for other values of 7., and
7., 'H-'3C dipolar cross correlation may have much more pronounced effects on
measured longitudinal relaxation rates. For NOE measurements, it is calculated that,
for all values of 7, and 7, examined in the present study (2 ns < 7, < 40 ns, 0 ps
< 1. < 100 ps), the contribution of cross correlation is less than 6-7% of the NOE
intensity predicted in the absence of such effects. Finally, the calculated effects of cross
correlation on transverse relaxation rates are significant for all values of correlation
times considered. Although dipolar relaxation between methyl protons and neighboring
protons does attenuate the effects of cross correlation on the measured *3C spin—spin
relaxation rates, caution must nevertheless be exercised in the interpretation of '3C
T, values as these effects are unlikely to be attenuated completely.
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