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The effects of dipolar cross correlation on ‘% T, , T2, and NOE values are calculated 
for methyl groups attached to macromolecules. Using the Woessner model to describe 
methyl-group internal dynamics, it is found that for macromolecules with tumbling times 
between 5 and 20 ns and fast internal methyl rotation characterized by a correlation time 
between 15 and 65 ps, the recovery of longitudinal magnetization differs by less than 10% 
from that of the case with no cross correlation. Therefore for a large range of values of T, 
and re, cross-correlation effects on longitudinal relaxation are small, despite the fact that 
reorientation is highly anisotropic. In contrast, for 13C spin-spin relaxation the effects of 
dipolar cross correlation are significant for all values of r, and 7, in the range examined 
(2 ns < r, < 40 ns, 0 ps < T, < 100 ps), and differences in relaxation rates by as much 
as a factor of 3.0 relative to predicted values based on the neglect of cross correlation are 
obtained for an isolated AX3 spin system attached to a macromolecule. The effect of cross 
correlation is calculated to change NOE values by no more than 6-7s in the range examined. 
The influence of neighboring ‘H spins on 13C relaxation is assessed by including random- 
field effects in the calculations. While the effects of cross correlation are attenuated, ‘% 
longitudinal and transverse relaxation rates can, under certain conditions, still be substan- 
tially different from rates obtained in the absence of cross correlation. Although a quan- 
titative description of cross-correlation effects on 13C relaxation depends on the details of 
methyl-group internal dynamics, the results derived here using the Woessner model are 
qualitatively the same as results obtained for different descriptions of the methyl-carbon 
internal motions. 0 1991 Academic press, IX. 

NMR is a powerful technique for obtaining information on internal dynamics in 
proteins. The measurement of relaxation rates of heteronuclei (A = 13C or “N) directly 
bonded to protons is particularly useful for obtaining motional information since the 
relaxation of these nuclei is governed predominately by dipolar interactions with di- 
rectly bonded protons. Other relaxation mechanisms such as chemical-shift anisotropy 
(CSA) and spin-rotation often make small contributions to the heteronuclear relax- 
ation ( 1). Moreover, the interpretation of such relaxation rates requires only that the 
‘H-A bond length be known and, in general, does not require a knowledge of the 
overall structure of the molecule in question. The availability of nearly complete 
heteroatom assignments of spectra of uniformly r3C- and “N-labeled proteins, due to 
recently developed double- and triple-resonance 3D (2-6) and 4D NMR ( 7, 8) tech- 
niques, has provided access to a large number of probes of internal dynamics throughout 
the entire molecule. This advance, coupled with 2D pulse schemes for measuring 
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heteroatom T, , T2 ( 9-l I), and NOES ( 11) with high sensitivity and resolution, allows 
for the extraction of a large number of highly accurate relaxation rates. 

The simplest and most common approach to the analysis of heteroatom relaxation 
rates is to assume that the interactions can be described in a pairwise fashion. In this 
way, for example, the dipolar relaxation of a carbon spin in an AX3 spin system is 
the sum of each ‘H- 13C contribution. However, this simplification neglects the fact 
that the motion of the three ‘H- 13C interatomic vectors is correlated and studies by 
Werbelow and Marshall (12), the Voids (13) and We&low and Grant (14) have 
shown that cross-correlation effects can be significant. A recent 13C NMR relaxation 
study of leucine residues of the protein staphylococcal nuclease ( SNase, MW 17 kDa) 
labeled with 13C in the C6 positions indicated that in almost all of the cases examined, 
the decay of transverse magnetization was not monoexponential ( 15 ) . This result has 
prompted us to examine the effects of dipolar cross correlation on measured T, , TZ, 
and NOE values for AX3 spin systems attached to molecules tumbling in the limit 
(~7,)~ B 1, where w and 7, are the spectrometer frequency and overall molecular 
tumbling correlation time, respectively. While the effects of cross correlation on 13C 
T, and NOE measurements (14) and on 13C T2 measurements ( 16) have been ex- 
amined in the literature for AX3 spin systems attached to molecules tumbling in the 
extreme narrowing regime [( ~7,)~ @ 11, to our knowledge studies of these effects in 
macromolecular systems [ ( QJT,)* 9 l] have not appeared. 

The equations describing the effects of dipolar cross correlation on 13C TI and NOE 
measurements in AX3 spin systems are given in (14) (see Eqs. [9.30] and [9.34]). 
The influence of cross correlation on measured 13C transverse relaxation in AX3 spin 
systems attached to macromolecules has not been described, however. Such a descrip- 
tion is most easily accomplished using Redfield theory ( 17). Using this formalism, 
the relaxation of elements of the density matrix corresponding to transverse A mag- 
netization is given by 

dp/dt = Rp, [II 
where p is a vector containing all density elements corresponding to transverse A 
magnetization and R is a Redfield relaxation matrix whose dipolar contribution from 
various pairs of interacting spins zj, kl is given by ( 17) 

R rjkl rra ‘a’lal” - - c { ( - 1 Y%n-n2~,( Ween )(c~JT~(ij)~d’)(a”‘)T~(kl)~a’) 
m,n 

In Eq. [ 21, LY, (Y’, a”, (Y”‘, and p denote the various spin states for an AX3 spin system 
( 18)) T$( ij) are the components of the second-order &polar spin tensor with n or m 
running from -2 to 2, and 6,~ is a Dirac function equal to 0 if CY # (Y’ and equal to 
1 otherwise. The Js)( w,,~) are the second-order spherical harmonic spectral densities 
evaluated at a frequency given by maa’ = (E,! - E,) / h . In the discussion that follows, 
JOkl( w) = J$$( w). Using the formalism of Lipari and Szabo ( 19, 20) we can express 
Jtikl( w) in a “model-independent” manner as 
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Jijk[(w) = 1/(4?r)~~sjd{s:(ij,kf)7m/[l + (w7,)2] 

+ [P*(“... Uk,) - 
I/ 

$‘W’ IT/I1 + (d21L [31 

where we have included the effects of cross correlation. In Eq. [ 3 J, {zj = 
(6r/5)0.5(yirjh/r$), Si”,Hd’ is an order parameter characterizing the internal motions, 
T, is the overall molecular tumbling correlation time, 7-i = r &’ + 7;’ , where T, is 
the effective correlation time for the internal motions, uij is a unit vector describing 
the orientation of the interaction vector u in a reference frame that is rigidly attached 
to the macromolecule, and P2 is a second-order Legendre polynomial. It is straight- 
forward to evaluate P2(uij- ukl) in terms of (6,, $ii) and (&, &), the polar angles of 
Uij and uk/, respectively, by the addition theorem for spherical harmonics (21) to give 

Pz(u,*u~) = i(3 cos*dij- 1)(3 cos28k[- 1) + i sin 28, sin 28k,COS( 4ij - @k[) 

+ $ sin28ijsin2~k~cos 2(4ij - c$k[). [4] 

If the motions of the vectors uii and UM are axially symmetric then Sf’l’,k” can be 
expressed as 

$“““’ = P2( cos ,$j)&( c0s &,), 151 

where P2( cos &) = (3 cos*& - 1)/2 and @ii is the angle between uii and the axis of 
symmetry. Note that for the case where ii = kl (autocorrelation terms) and where 
vector ij executes threefold jumps about some symmetry axis, Eq. [ 31 reduces to the 
Woessner model (22), where 7, is the correlation time describing the three-site jump. 

Equation [l] can be solved numerically using standard matrix techniques to give 
(14) 

p(t) = Q exp(-Q’RQt)Q’p(O), 161 
where Q is a matrix of eigenvectors of R, Q-’ is the inverse of matrix 0, and p(O) 
contains the values of the transverse A elements of the density matrix at the outset of 
the relaxation period. Finally, 13C transverse relaxation is evaluated according to 

A w CC TrbW%d~ [71 
where Axcyj is the x(y) component of r3C magnetization written in matrix form and 
Tr denotes the trace of the matrix p(t) - Axcy). 

In the limit that J(0) spectral-density terms dominate the transverse relaxation, a 
simple analytical solution to Eq. [l] is readily derived, 

dao;‘t) = { -2J~d0) - 4JcmdO)lAoudt) 

dAIN(f) -= 
dt -2~mdO) + ; &HCH(O) &i(t), 

where AouT is the intensity of the two outer lines of the 13C quartet, AIN is the intensity 
of the inner two lines, &uc( 0) is the autocorrelation spectral-density function (19~ = 
&,[ = 109.5”, diJ - & = 0” in Eq. [ 41) for the internuclear ‘H- 13C vector evaluated 
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at zero frequency, and JCHCH(0) is the three-spin cross-correlation spectral-density 
function where two distinct ‘H methyl spins share the same ’ 3C spin ( 8, = t&l = 109.5 ‘, 
$ij - &I = 120” in Eq. [ 41) . Equation [ 81 describes the relaxation of the 13C multiplet 
components of a methyl group that would be measured using a standard CPMG (23, 
24) pulse sequence. We have assumed that the delays between successive application 
of 180” pulses are much shorter than 1 /( 2 JXH), where JxH is the one-bond ‘H- 13C 
coupling constant, so that the effects of scalar relaxation of the second kind (II) are 
insignificant. The solution to Eq. [ 81 is 

AOUT = AOUT ewl[-2JAHdO) - ~JcHcH(O)~~) 

&N(t) = 3AodO) exp{ [-2JAdO) f !JcHcH(O)I~I. 

Ax(t) = AOUT + AIN 

= A(O){2 exP[(-2&c(O) + 9JCHCH(Wl 
+$w[(-~JAHc(O) - ~JcHcH(O))~I)~ [91 

where A,(t) is the x component of A ( 13C) magnetization. Thus, in the limit that 
(UT,)* >> I, the relaxation of A,( t ) is biexponential because the outer lines relax more 
rapidly than the inner lines as a consequence ofdipolar cross correlation. Note, however, 
that for short t (t % {2J&(O) - jJCHCH(0)}, t Q (2JAHC(0) + ~Jc~&O)}), the 
relaxation is independent of the effects of cross correlation. 

A qualitative appreciation of the effects of cross correlation on the decay of longi- 
tudinal and transverse magnetization can be obtained 'by examining Eq. [ 31 in more 
detail. Substitution of Eq. [ 41 into Eq. [ 31 and using the Woessner model to describe 
internal dynamics give 

Ji,kd(J) = 1/(4dhj!-k;tr([(3 cOS2P - 1)*/417,/[1 + ((JTd2] 

-t [t sin*20 cos(4U- &) + a sin40 cos 2(& - &)]T/[l + (07)*]}, [lo] 

where /3 is the angle between vectors uil or nk/ and the symmetry axis of the methyl 
group and all other symbols are defined as for Eq. [ 3 1. Note that for the case of a 
methyl group with (& - f&l) = 0” (if rj = kl) and with ( Oii - +k() = 120” (if ij # k/) 
it is possible to express the auto (cross) spectral-density functions as a weighted sum 
(difference ) of slow- and fast-motion contributions via 

Jtiu(w) = a + 26 

J&,(m) = U - b (ij $: kl), 1111 
where a = 1/(47r) {&[ {[(3 cos*p - 1)*/4]7,/[1 + (COT,)*]} and b = 1/(47~)3;j{~~ 
X {[i sin*26 + 4 sin4P]7/[1 + (~7)~]}. 

Equation [ 1 l] shows that since a, b 2 0 

Jijijtw) 2 J&w) (ij + kl), [I21 

with equality of auto- and cross-spectral-density terms occurring only in the limit that 
T, = 0. In this limit and assuming further that (UT,)‘! @ 1, Werbelow and Grant (14) 
showed that the effects of cross-correlation on methyl-carbon longitudinal relaxation 
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are substantial. On the basis of their calculations one might suppose that cross cor- 
relation will significantly affect longitudinal methyl-carbon relaxation in macromol- 
ecules where reorientation is highly anisotropic, i.e., 7, B 7,. However, this expectation 
is not in general fullfilled for methyl-carbon relaxation in macromolecules for the 
following reason. In the macromolecular limit, (~7,)~ % 1, and assuming further that 
(~7,)~ + 1, it is easily shown that Jiikl( o) (ij # kl) vanishes for certain values of the 
correlation times. This occurs for methyl-group cross-spectral-density terms JcHCH( o) 
when 

7eTm - l/(402). [I31 

We note that if ~~7, > 1 / (4~ 2, cross- and auto-spectral-density terms are of opposite 
sign (cross-spectral-density terms are negative) while both cross- and auto-spectral- 
density terms are positive for ~~7, < 1 /( 40 2). When Eq. [ 13 ] is approximately satisfied 
the cross-spectral densities are much smaller than the auto-spectral densities and cross- 
correlation effects on longitudinal relaxation are negligible, despite the fact that re- 
orientation is highly anisotropic. In contrast, for 7, values such that T, 4 [ 1 /( 4w 27m)], 
( WT, ) 2 % 1, ( ~7,) 2 4 1, the decay of longitudinal magnetization is highly nonexpo- 
nential since in this limit the ratio of cross- to auto-spectral densities is maximal. In 
the limit that T, % [ 1/(4w27,)] and (~7,)~ $ 1, (07,)~ -C 1, J.&W) = -2&cu(~), 
and the effects of cross correlation are significant as well. 

The situation is somewhat more complicated than that described above, since the 
effects of cross correlation depend upon the sum of cross-spectral-density terms eval- 
uated at several different frequencies. A quantitative picture of such effects can be 
obtained by realizing that the limiting slope at t = 0 of the recovery of longitudinal 
or transverse magnetization is equal to the slope in the absence of cross correlation 
while the limiting slope at t = cc can be significantly smaller due to the influence of 
cross correlation. Therefore, a measure of the effect of cross correlation on methyl 
relaxation is the value of the ratio of the slopes of the relaxation curves at t = 0 and 
t = cc. This ratio is calculated and plotted in Fig. 1A with internal methyl-group 
dynamics described by the Woessner model (22). For macromolecules with tumbling 
times between 5 and 20 ns and fast internal methyl rotation characterized by a cor- 
relation time between 15 and 65 ps, the slope of the recovery of longitudinal mag- 
netization at long relaxation times (t + cc) differs by less than 10% from that in the 
case with no cross correlation. For shorter recovery periods the deviation is smaller. 
For methyl correlation times faster than 10 ps the effects of cross correlation become 
more severe. 

Understanding the influence of cross correlation on the transverse relaxation rate 
for methyl carbons in macromolecules is more straightforward than that for longi- 
tudinal relaxation since in the former case the dominant contribution to relaxation 
originates from spectral-density terms of the form 

Jijkdo) = 1/(4~)~~~kl~2(COS &)~2(cos Pklbm, iI41 

where axially symmetric internal motion has been assumed. Note that both auto- and 
cross-spectral-density terms are equal for all values of 7, and T, provided that (~7,)~ 
$ 1 and (wr,) 2 Q 1. There is no sign reversal of cross-spectral-density functions and 
hence the ratio of cross- to auto-spectral-density terms is maximal. Not surprisingly 
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FIG. 1. Contour plots showing the effects of dipolar cross correlation on the relaxation of longitudinal 
(A) and transvetse (B) methyl-carbon magnetization. The Woessner model (22) is used to describe the 
methyl-group dynamics. Each contour indicates the limiting ratio of the slopes (evaluated at f = 0 and at t 
= cz ) of the relaxation curves calculated with cross-correlation effects. The slope ratio associated with each 
contour line is indicated by the number adjacent to each line. 

the effects of cross correlation are significant. This situation is very similar to results 
obtained for longitudinal relaxation in the limit that T, --* 0. Figure 1B shows the 
effects of cross correlation on transverse 13C methyl-group relaxation for methyl-group 
motion described by the Woessner model. As is illustrated, the effects on transverse 
relaxation are severe for the range of 7, and T, values considered. 

Figure 2 illustrates the influence of cross correlation on the recovery of longitudinal 
and transverse magnetization as well as on the NOE .for particular values of T, and 
T,. For simplicity, the Woessner model has been used with r, equal to the three-site 
jump correlation time and Sf2(iirk’) given by Eq. [ 5 1. For +m = 10 ns and T, = 25 ps 
it is clear that the effects on longitudinal magnetization recovery are small. In this 
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3.9 

FIG. 2. The effects of dipolar cross correlation on the T, , T2, and NOE profiles of a 13C spin in an AX3 
spin system (methyl group) attached to a macromolecule for select values of 7, and 7,. The Woessner model 
is used to describe methyl-group dynamics. The reduced variable, t’, is equal to t/ Ti=(1,21, where T, is the 
relaxation time in the absence of cross correlation or random fields. (A) T, recovery of 13C magnetization 
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case, the initial and final relaxation rates differ by only 57/o, while for 7, = 5 ns and 
T, = 25 ps the curves derived with and without dipolar cross-correlation effects are 
superimposable. The effects of cross correlation on 13C spin-spin relaxation rates are 
dramatic, as Fig. 2B illustrates. In the particular case where values of 7, = 10 ns and 
7, = 25 ps are chosen, the initial and final decay rates of transverse magnetization 
differ by a factor of 2.4. The effect of cross correlation on the NOE is indicated in Fig. 
2C. For T, = 10 ns and for NOE values less than -2.6, neglect of cross correlation 
will result in an error in T, of at most 5 ps. However, for NOE values larger than 2.6, 
neglect of cross correlation can result in significant errors in the estimation of 7,. As 
Fig. 2C illustrates, cross correlation does not change the absolute intensity of the NOE 
appreciably. For 0 ps c T, G 100 ps and 2 ns G T, G 40 ns the intensity change is 
never in excess of 6-7%. 

The results discussed above have been derived assuming isolated AX3 spin systems. 
In tightly packed macromolecules, such as proteins, this simplification is clearly not 
valid. For example, in the protein SNase, there are, on average, close to 100 proton 
spins within 4 A of the leucine C6 methyl protons (25). In order to explore the effects 
that dipolar interactions between the methyl protons and neighboring ‘H spins have 
on cross correlation we have included ‘H random-field effects in the calculation ( 14). 
While the use of random fields does not rigorously model the effects of dipolar inter- 
actions between spins ( 13)) it nevertheless provides a framework in which a qualitative 
estimate of the influence of neighboring spins on 13C relaxation can be obtained. 
Figure 3A illustrates the contribution of random-field terms of differing sizes to the 
transverse relaxation of 13C magnetization in an AX3 spin system for T, = 10 ns and 
T, = 25 ps using the Woessner model to describe the methyl-group internal dynamics. 
As can be seen, random-field contributions due to “external” ‘H spins decrease the 
effects of cross correlation, This is true for T, and NOE: values as well, where for the 
values of 7, and 7, used in Fig. 3A, the curves corresponding to the situation with 
and without cross correlation become nearly superimposable (data not shown). We 
have also examined the influence of the surrounding ‘H spins by explicitly including 
a fourth ‘H in the calculations at a distance of 1.8 A from the methyl protons. As 
expected, the effects of cross correlation decrease and for T, = 10 ns and 7, = 25 ps 
the ratio of initial to final slopes of transverse magnetization decay (data not shown) 
decreases from 2.4 in the absence of the fourth ‘H spin to 2. I in its presence. 

The extent to which cross correlation affects 13C relaxation is also a function of the 
motional properties of the 13C spin. For example, consider a model in which, in addition 

(-ln[l/2( I - A,/&)]) vs t’, where A, and A,, are “C z magnetization and equilibrium magnetization, 
respectively, with full ‘H decoupling and with (solid lines) and without (dashed line) dipolar cross correlation. 
The solid curve closest to the curve describing relaxation in the absence of dipolar cross correlation (dashed 
line) was obtained with T, = 10 ns followed by curves obtained with values of 7, equal to 2.5 and 15 ns. 
The curve generated with T, = 5 ns can be superimposed on the dashed line. The value of r, was set to 25 
ps in all cases. All random-field terms were set to zero. (B) T, decay of “C magnetization (-In [&/A,] vs 
t’) with (solid lines) and without (dashed line) cross correlation calculated in the absence of ‘H decoupling. 
Values of 7, = 2.5 ns (a), 5.0 ns (b), 10 ns (c), and 15 ns (d) were chosen with T, set to 25 ps in all cases. 
Random-field terms were set to zero. (C) NOE vs 7, for the case with (solid lines) and without (dashed 
line) cross correlation. Value of T, = 2.5 ns (a), 5 ns (b), 10 ns (c), and 15 ns (d) were chosen. Random- 
field effects were neglected. 



544 KAY AND TORCHIA 

to fast methyl rotation, an additional motion on a time scale intermediate between 
methyl rotation and the overall molecular tumbling is included. This is a model that 
might be used to describe the dynamics of a methyl group attached to a long side 
chain. For this case the spectral-density function of Clore et al. (26) is modified to 
give 

J&w) = 1 /( 47r) ri&;r( S*‘“,k” T,/[l + (UT,)*] + [P2(Uij’Uk,) - Sf(@~)]71/ 

[I + (w+] + $‘~~“‘( 1 - S,2)T,/[l + (U7*)2]), [15] 

where Syk’) and S, are order parameters describing the fast and slow methyl internal 
motions, respectively, S* = S:(“,k’).Sz, 7;’ = ril + of’, 7;’ = 7;’ + T;‘, Trand T, 
are the correlation times for the rotation about the methyl symmetry axis and the 
slower reorientation of the symmetry axis, respectively, and all other symbols are 
defined as for Eq. [ 31. For the case of a methyl group executing three-site jumps about 
a symmetry axis, 

$“‘,k” = &( cos &)&(c0s &,), 1161 
where & and @k[ are defined as before. 

Figure 3B shows the effects of cross correlation and random fields on ’ 3C transverse 
relaxation in an AX3 spin system using this new model to describe internal motion 
and for which values of T, = 10 ns, Tf = 25 ps, 7, = 0.5 ns, and Sf = 0.5 are chosen. 
[The value of S’, is readily calculated from Eq. [ 161 assuming tetrahedral geometry 
so that, for example, for spectral-density terms JAHC(w) and Jcncn(~), & = ,8k[ 
= 109.5” and S2f(uykl) = 0.1111. Although cross correlation still has a significant effect 
on the rate of decay of transverse magnetization of an isolated AX3 spin system, the 
ratio of the initial to the final decay rates has decreased from 2.4 for the Woessner 
model (T, = 10 ns and T, = 25 ps) to 1.9. Additionally, random fields attenuate the 
effects of cross correlation more significantly than in the Woessner model, as the figure 
illustrates. 

In addition to dipolar interactions involving methyl protons and neighboring spins, 
competing relaxation mechanisms, such as CSA, spin-rotation, and ‘H- 13C dipolar 
interactions involving nonbonded protons can also decrease the influence of dipolar 
cross correlation. However, for methyl groups in proteins the effects of CSA are small; 
assuming an axially symmetric chemical-shift tensor with Aa = 25 ppm (27) and 
using the Woessner model with T, = 10 ns and 7, = 30 ps, the contributions of CSA 
to T, , T2, and the NOE at a frequency of 500 MHz are less than 2.5% of the contri- 
bution from the ‘H- 13C intra-methyl-group dipolar interaction. An estimate of the 
influence of spin-rotation on the relaxation of 13C methyl spins in macromolecules 
can be obtained from 13C relaxation studies of the methyl group in toluene measured 
at temperatures between 200 and 330 K (28). A contribution of no more than 0.05 
sP1 to the overall 13C methyl-group longitudinal relaxation rate is obtained from spin- 
rotation. This value is larger than the contribution expected in proteins where the 
diffusion of the methyl group is considerably slower than the free diffusion experienced 
by the methyl group of toluene (29). Thus for “C relaxation in macromolecules a 
contribution of at most a few percent is expected from this relaxation mechanism. 
Finally, 13C dipolar interactions with remote ‘H spins are also likely to be negligible 
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FIG. 3. The effects of ‘H random-field terms on “C transverse relaxation in AX, spin systems attached 
to macromolecules. Only auto-random-field terms are considered. In a-d the effects of dipolar cross correlation 
are included. (a) Random-field terms set to zero. (b) j( w ) = 5 J( w ), where j( w ) is the ‘H random-field 
spectral-density term and J( w ) is the autocorrelation term arising from ‘H- ‘H methyl-group dipolar inter- 
actions. (c) j(w) = 204~). (d) j(o) = 504~). (e) Random terms set to zero and the effects of cross 
correlation are neglected. (A) The Woessner model (22) is used to describe the methyl dynamics with values 
for 7, and 7, of 10 ns and 25 ps, respectively. (B) The model described in Eq. [IO] is used with 7, = 10 
ns,rI.=25ps,r9= 0.5 ns, and S: = 0.5. The reduced time variable t’ is defined as in Fig. 2. 

since for methyl groups the dominant 13C relaxation mechanism is provided by the 
three ‘H spins located at - 1.09 A from the 13C nucleus. 

Experimentally we have observed the effects of cross correlation on the decay of 
13C transverse magnetization of methyl groups attached to leucine residues in the 
protein SNase. It was found that the initial transverse relaxation rate was lo-20% 
faster than the relaxation rate after 13C magnetization had decayed to -20% of its 
original value. These experimental results indicate that, at least in this case, the effects 
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of cross correlation are somewhat smaller than theoretical predictions described here 
on the basis of simple models for the internal methyl dynamics. Nevertheless, it is 
clear that ‘H- 13C dipolar cross correlations can have important implications for the 
interpretation of T, and T2 values within the framework of a specific motional model. 
It is therefore critical that such values be obtained from the initial decay of magneti- 
zation where the influence of cross correlation is smallest and that the size of 
such effects be estimated by comparing the initial decay rate with the rate at much 
longer times. 

In summary, in this paper we have considered the effects of dipolar cross correlation 
on measured 13C T1, T,, and NOE values in AX3 spin systems attached to macro- 
molecules. For 5 ns < 7, < 20 ns, 15 ps < 7, < 65 ps, the contributions to T, values 
are likely to be small, especially for methyl groups buried in the molecule and thus 
in close proximity to a large number of ‘H spins. However, for other values of 7, and 
7 ‘H- 13C dipolar cross correlation may have much more pronounced effects on 
mkasured longitudinal relaxation rates. For NOE measurements, it is calculated that, 
for all values of T, and 7, examined in the present study (2 ns < T, < 40 ns, 0 ps 
< 7, < 100 ps), the contribution of cross correlation is less than 6-7s of the NOE 
intensity predicted in the absence of such effects. Finally, the calculated effects of cross 
correlation on transverse relaxation rates are significant for all values of correlation 
times considered. Although dipolar relaxation between methyl protons and neighboring 
protons does attenuate the effects of cross correlation on the measured 13C spin-spin 
relaxation rates, caution must nevertheless be exercised in the interpretation of 13C 
T2 values as these effects are unlikely to be attenuated completely. 
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Note added in proof Cross correlation between CSA and dipolar interactions may result in substantial 
errors in the measurement of heteronuclear r, and r2 values. (J. Boyd, U. Hommel and I. Campbell, Gem. 
Phys. Letf. 175,477 (1990); L. E. Kay, L. K. Nicholson, F. Delaglio, A. Elax and D. A. Torchia, J. Map. 
Reson. in press). We have recently developed pulse schemes to eliminate such effects (L. E. Kay, L. K. 
Nicholson, F. Delaglio, A. Bax and D. A. Torchia, J. Magn. Reson., in press). 
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