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A two-dimensional NMR simulation program has  been  constructed which is capable 
of analyzing the effects of an  arbitrarily complex sequence of hard pulses on  a  set of 
homonuclear  spin-f nuclei. The  program is capable of simulating spin systems with strong 
Jcoupl ing and  includes T, relaxation due  to pair-wise dipolar interactions. In this capacity 
the program provides insight into the effects that strong coupl ing and  dipolar spin-lattice 
relaxation can introduce in common 2D NMR experiments. As an  illustration of the 
program, experimental and  simulated NOESY data sets on  2,6dicarboxynaphthalene are 
presented. Good  agreement  is found between the experimental and  simulated spectra. 
Simulation of data sets with different mixing times, and  different J coupl ings contributes 
to an  understanding of the origin of deviations from first-order behavior.  0  1986 Academic 

Press, Inc. 

INTRODUCTION 

Two-dimensional NMR has become a  valuable tool for providing structural and  
dynamic information on  a  wide range of mo lecules (1-3). Early applications, however, 
assumed spectra to be  first order to achieve a  simple interpretation of the position and  
magn itude of cross peaks in terms of mo lecular structure. As applications to more 
and  more complex mo lecules have been  pursued an  understanding of deviations from 
simple first-order behavior and  an  understanding of new and  more versatile 2D ex- 
periments have become increasingly important. This understanding often requires 
knowledge of phase properties of cross peaks (4) and  second-order effects either from 
strong coupling (5) or complex relaxation pathways (6). In many cases, this knowledge 
cannot be  obtained from the simple vector diagrams used to rationalize early pulse 
NMR experiments or the more recent spin operator formalism (7, 8). O ften a  more 
detailed solution in terms of density matrix methods is required. Density matrix ma- 
nipulations are easily programmed on  digital computers and  the resulting programs 
can offer both insight into the effects of various components of a  pulse sequence 
and  simulation of expected results. Some versions of such programs have begun  to 
appear  (9-Z I). 

We  present here a  program developed in our laboratory capable of simulating the 
effects of complex 2D pulse sequences on  a  homonuclear  spin-f system. The  novel 
aspects of the program include its ability to simulate strongly coupled spin systems 
and  the inclusion of T i relaxation due  to spin-pair dipolar interactions. It is well 
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known that strong coupling can give rise to intensity anomalies and additional reso- 
nances in 2D NMR spectra, and a computer program of this sort can provide insight 
into how significant these types of effects might be. 

In this manuscript we will briefly review the requisite density matrix equations and 
give a short description of how the simulation program was constructed. In addition, 
we will present experimental and simulated 2D NOE spectra on 2,6-dicarboxy- 
naphthalene, a small molecule which can be approximated as containing a pair of non- 
interacting, equivalent ABX spin systems. 

THEORY 

The density matrix equations necessary to describe the effects of arbitrarily complex 
pulse sequences on a weakly coupled, nonrelaxing spin system have been described 
by McClung et al. (9). We present here a similar approach which has been extended 
to include the effects of strong J coupling and T, relaxation. 

The rotating-frame equation of motion of the density matrix, p(t), is given by 

f p = ; [P, HI. [II 

In Eq. [l] we will initially treat only the effects of scalar coupling, chemical shift, and 
rf pulses so that 

H = Ho + H, PI 

where Ho describes the interactions of the spins with the magnetic field in the rotating 
frame as well as J-coupling effects and HI represents the contributions to H due to the 
application of an rf field. 

The application of a strong pulse along axis q(H, P Ho) allows straightforward 
integration of Eq. [ 11. Representation of p at the end of the pulse is given by 

Ia’) = %wP(t-N(Q [31 
where 

F&(d) = exp(i0 C I,j) 141 

is the pulse rotation operator in a basis set representation in which Ho is diagonal, 
Rl(t9) is the matrix adjoint of R&e), and t- and t+ denote times immediately before 
and after application of the rf pulse, respectively. 

Evolution of paa (a # /I) during times when H 1 = 0 can also be described in terms 
of a simple integrated form of Eq. [ 11: 

Pn&) = exp(j(~, - wdt)p&O)exp(-t/T$) [51 
where w, and wB are the appropriate eigenvalues of Ho containing chemical-shift and 
J-coupling information and p&O) is the a/3 element of the density matrix after a pulse. 
Transverse relaxation is included as a single constant T? for convenience in calculation. 
In general Tf will differ for different elements of the density matrix. 

Pulse sequences are usually followed by observation of transverse magnetization. 
Once the time dependence of p is known, evaluation of transverse magnetization, 
M, + iMy, can proceed according to 
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&I, $- iMy = y/i Tr{ p(l, + ilJ} W I 
where I, is the projection of spin angular momentum Z along axis q in a basis set 
representation which diagonalizes Ii,,. 

The spin angular momentum matrices, I, and I,, and the pulse rotation matrices, 
R&r?), discussed above are generated for an N-spin case by a direct product recursive 
procedure similar to that used by McClung et al. in their simulation program (9). 
Transformation to a basis set representation which diagonalizes Ho is then accomplished 
according to 

T-‘OT [71 

where T is a matrix of eigenvectors of H,, generated by standard matrix diagonalization 
subroutines and 0 is the matrix which is to be transformed from the direct product 
basis set to the basis set where Ho is diagonal. Calculation of magnetization at successive 
time points generates an FID which can be Fourier transformed to yield a frequency 
spectrum. 

Introduction of spin relaxation into Eq. [l] is straightforward under certain lim iting 
cases: namely, that we consider only spin-lattice relaxation, that we assume that all 
off-diagonal elements in p decay rapidly compared to Ti (Tf 4 T,) and that we work 
in a basis set that diagonalizes Ho. Under these assumptions relaxation can be included 
by adding a single term to the diagonal elements of Eq. [l] so that they evolve according 
to (12) 

where [p, HI,, = 0 since Ho is diagonal. In Eq. [8] p& is the thermal equilibrium 
element of the density matrix corresponding to eigenvector I@. For a collection of n 
spins with Z  = f , R,,,, is an element of the 2” X 2” Redfield T, relaxation matrix and 
is given by (13) 

In Eq. [9] 

Jasyd~) = s -’ (dHdt)lP)(81H& + r)Iy)exp(-ior)dT [lOI 

where Z&(t) is the dipolar Hamiltonian at time t, { Ia)) is the set of eigenvectors of 
Ho, 6,, is the Kroenecker delta function, and the bar denotes an ensemble average. 

In our simulation we will zero the off-diagonal elements of p at the onset of specified 
relaxation periods. This eliminates cross-peaks which arise due to the excitation of all 
orders of coherence by the 90”-t,-90” portion of the NOESY sequence. Experimentally 
this is achieved by a stochastic variation of the m ixing time or by application of a 
gradient pulse at the start of the m ixing period (14). The assumptions used in modifying 
Eq. [l] are in keeping with our primary objective of providing an assessment of the 
contributions of strong J coupling to NOE spectra. These contributions are distinct 
from the effects that give rise to the zero and high-order quantum J peaks discussed 
by Ernst et al. (14) and will be elaborated on in the discussion. 



0 4 

0 4 

FI
G.

 1
. F

lo
w 

ch
ar

t s
ho

wi
ng

 th
e 

co
ns

tru
ct

io
n 

of
 th

e 
sp

ec
tra

l s
im

ul
at

io
n 

pr
og

ra
m

. 



CROSS-RELAXATION IN COUPLED SYSTEMS 519 

Evolution during a mixing or relaxation period can now be treated using Eq. [S] 
which can be integrated to give 

p(t) = pT t- Q[exp(Q-‘RQ)t]Q-‘(p(O)-pr) ill1 
where p(t) and pr are column vectors containing the on-diagonal elements of the 
density matrix at time t after the start of the relaxation period and at equilibrium, 
respectively, R is the Redfield T, relaxation matrix, and Q is a matrix containing the 
eigenvectors of FL 

Elements of the Redfield T, relaxation matrix describing relaxation due to pairwise 
dipolar interactions between spins were obtained by expressing the wavefunctions of 
the spin system as linear combinations of the simple product wavefunctions using 
coefficients determined by the eigenvectors of the Hamiltonian. RaaoB was then cal- 
culated using Eqs. [9] and [lo] and assuming isotropic motion. 

Figure 1 shows a flow chart illustrating the implementation of the simulation scheme 
described above. The program was written in Fortran and was run on a Vax 1 l/750 
computer making use of a CSPI Minimap array processor for most matrix manipu- 
lations. Because the program has the capability of phase cycling both receiver and 
pulse phases independently it is possible to carry out 2D simulations in quadrature 
in both dimensions or to phase cycle to remove artifacts such as strong axial peaks 
generated in 2D NOE experiments. 

RESULTS 

To test the program we have chosen to simulate a NOESY experiment on a molecule 
of 2,6-dicarboxynaphthalene. The pulse sequence simulated in this study is (90”)$,- 
t,-(90’)&T-(90”)&+ in which (9O”)$i is a hard rfpulse ofphase $i, t, is the evolution 
time, T is the mixing period, and t2 is the acquisition period. The spin system simulated 
was represented as a three-spin ABX case. A 1D spectrum of the molecule shows 
strong scalar coupling between protons 3 and 4. Strong dipolar interactions exist be- 
tween ‘H(3) and ‘H(4) and between ‘H(4) and ‘H(5) with a weaker interaction existing 
between ‘H(3) and ‘H(5). In Fig. 2 the A spin is assigned to ‘H(3) while the B and X 
spins are assigned to protons 4 and 5, respectively. Shifts and coupling constants are 
summarized in Table 1. Internuclear distances were obtained from a crystal structure 
of napthalene (15). The correlation time used in the simulation experiments was cal- 
culated using the T, value of proton 5 and assuming that its only source of relaxation 
is due to strong dipolar coupling with proton 4. 

Figure 3a shows a simulated NOE experiment of protons 3, 4, 5 of the molecule 

coo - 

H(3) 
A 

k-9 
X B 

FIG. 2. Molecular structure of 2,6-dicarboxynaphthalene. 
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TABLE 1 

Spectral Simulation Parameters 

Chemical shift (ppm) Internuclear distance (nm) Coupling constants (Hz) 

6, = 7.91 rj., = 0.244 534 = 8.53 
64 = 7.99 rq5 = 0.248 J45 < 0.7 
65 = 8.36 rq5 = 0.475 XI < 0.7 

2,6dicarboxynaphthalene with phase cycling to eliminate axial peaks. The carrier was 
placed at one end of the spectrum since the set was not simulated with quadrature in 
Tl. TWO hundred fifty-six experiments each containing 256 points were generated. 

Figure 3b shows the experimental 2D NOESY spectrum of 2,6-dicarboxynaphthal- 
ene at 298 K. 2,6-Dicarboxynaphthalene (dipotassium salt, Aldrich, Milwaukee, Wk.) 
was dissolved in D20 to give a concentration of 0.05 M and the sample was purged 
with N2 for 5 min before sealing. EDTA (5 mM) was added to scavenge any para- 
magnetic impurities in the sample. The data were acquired on a 250 MHz spectrometer 
operating in the pulse Fourier transform mode. A 16 scan pulse sequence which sup- 
presses axial peaks as well as double quantum coherence and allows for quadrature 
in F1 (n type) and F2 was employed. A mixing delay of 3 s was chosen and was varied 
stochastically to eliminate J cross peaks. One hundred twenty-eight experiments with 
128 complex points per experiment were acquired. A sweep width of 300 Hz was 
employed to give the same resolution as in the simulated spectra. Both data sets were 
symmetrized. 

Figures 4 and 5 show column cross-sections through resonances centered at 
6 = 8.36 ppm and 6 = 7.89 ppm, respectively, from both simulated (a) and experimental 
(b) data sets. 

Both the experimental and the theoretical data sets were processed on a Vax 
1 l/750 computer. In both cases the data were weighted by using the sine-bell weighting 
function on all points in both dimensions, magnitude corrected, and zero-filled to give 
a IK by 1K matrix. 

DISCUSSION 

Figures 3,4, and 5 show good qualitative agreement between the simulated and the 
theoretical NOESY spectra of 2,6-dicarboxynaphthalene. A good representation of 
the one-dimensional spectrum exists on the diagonal of Fig. 3 with A, B, and X peaks 
at 7.91, 7.99, and 8.36 ppm relative to HDO. Cross peaks between protons 3 and 4 
and protons 4 and 5 expected based on first-order analysis and the spatial proximity 
of the spins (2.44 and 2.45 A) are seen at (7.99 ppm, 7.91 ppm), (7.91 ppm, 7.99 
ppm) and (8.36 ppm, 7.99 ppm), (7.99 ppm, 8.36 ppm), respectively. A comparison 
of cross-peak intensity ratios is presented in Table 2. We believe that there is good 
agreement between simulated and experimental data sets. The deviations observed 
very likely result from small errors in the internuclear distances input into the simu- 
lation program. These distances were obtained from a refined crystal structure of 
napthalene (15) in which proton positions were calculated based on idealized geom- 
etries. For distances on the order of 2.5 A, an error of 5-10s can account for the 
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FIG. 3. (a) Contour plot of a simulated 2D NOE experiment on an ABX spin system using parameters 
summarized in Table 1. (b) Contour plot of an experimental 2D NOE experiment on 2,6dicarboxynaphthalene 
using sweep widths and spectral parameters to correspond to those in a. 

discrepancies between experiment and theory observed in this study. Other possible 
sources of discrepancy between experimental and simulated data sets come about due 
to the neglect of cross-correlation terms in expressions for the elements of the Redfield 
relaxation matrix and the assumption of isotropic motion. 
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8.4 8.0 7.6 
PPM 

FIG. 4. Simulated (a) and experimental (b) column cross-section through resonance centered at d = 8.36 ppm. 

One of the important features of the simulation program lies in its capacity to 
evaluate the relative importance of different pathways of magnetization transfer. For 
example, the transfer of magnetization from ‘H(3) to ‘H(4) can originate in one of 
two different processes. The first process, which is well understood, is an incoherent 
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Jb- 
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FIG. 5. Simulated (a) and experimental (b) column cross-section through resonance centered at 6 = 7.89 ppm. 
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TABLE 2 

Intensities of Selected Column Cross-Sections 

Column 6 Cross-section Observed Simulated 
cross-section resonance intensity intensity 

6 = 8.36b 8.36 1 
1.99” 0.18 
7.90” 0.028 

6 = 7.89’ 8.36 0.060 
8.01 0.23 
7.97 0.060 
7.91” 1 

’ Integrated intensity of the doublet. 
b Data normalized to singlet at d = 8.36 ppm. 
’ Data normalized to doubled centered at 6 = 7.9 I ppm. 

1 
0.12 
0.026 

0.044 
0.22 
0.044 
1 

transfer due to cross-relaxation between the interacting spins. This transfer is distance 
dependent and is the one assumed to be operative in attempting a first-order analysis 
in terms of molecular structure. The second transfer process arises purely from scalar 
coupling and is distance independent. Its neglect can lead to errors in structure analysis. 
This latter effect is due to unequal m ixing of elements of transverse magnetization 
into longitudinal magnetization by the 90”-tr-90” excitation sequence. Ernst et al. 
have shown that for a weakly coupled two-spin-f system on-diagonal elements of the 
density matrix differing in the spin state of the first nucleus (e.g., (aculplcucu) and 
(/?&@a)) at the beginning of the m ixing period contain equal intensity contributions 
from magnetization evolving during tl at the characteristic frequency of the second 
nucleus (14). A third 90” pulse produces magnetization associated with the first spin, 
proportional to the difference of such on-diagonal elements. Because of the equality 
of these elements no modulation at frequencies corresponding to the transition of the 
second nucleus would occur. Strong coupling removes the equality between such ele- 
ments so that in general some of the on-diagonal elements associated with the first 
spin in the weak coupling case now contain different m ixtures of frequency labeled 
components of the second spin. Application of the third 90” pulse samples this in- 
equality so that, for a two-spin system, an element of transverse magnetization in t2 
will be a function of all four frequency labeled components in t, . The effects produced 
are somewhat analogous to the transfer of magnetization which occurs in spin systems 
containing resolvable J couplings which are excited with a pulse sequence of the form 
(90”)~,-tl-(P)~*-7-(~)~~-t2 with P Z 7r/2 (16). In this case the first p pulse partly 
converts out-of-phase magnetization, 2ZkyZ[z, into longitudinal two-spin order, 2ZkzZ,=, 
which is subsequently converted into observable antiphase magnetization, 2Zk,Zrz and 
2Z1yZkz, by the second p pulse (see Eq. [ 31 of (16)). In this way transverse magnetization 
associated with spin k can be transferred to spin I even in the lim it where 7 is small 
compared to the inverse of the cross-relaxation rate. The latter mechanism, however, 
is inoperative when 0 is set equal to 90”. 

Contributions from these different processes can be evaluated by simulating spectra 
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under certain limiting conditions. For example, by setting the mixing time to zero we 
eliminate the dipolar mechanism of magnetization transfer between spins 3 and 4. In 
this way, we have determined that 30% ofthe magnetization transferred between ‘H(4) 
and ‘H(3) occurs via cross-relaxation between these spins. The remaining 70% is there- 
fore attributed to the scalar coupling mechanism. This is not surprising in lieu of the 
highly second-order nature of the ‘H 3-4 spin system (J/6 = 0.44). In experimental 
situations departures from first-order behavior are easily recognized. For example, the 
multiplet components of the cross peaks centered at (7.91, 7.99) and (7.99, 7.91) are 
highly asymmetric. In first order all four components of the cross peaks should have 
equal intensity. 

The appearance of cross peaks between protons 3 and 5 clearly cannot be interpreted 
on a first-order basis since protons 3 and 5 are 4.75 A apart and first-order cross- 
relaxation mechanisms should account for less than 10% of the ‘H(5) to ‘H(3) cross- 
peak intensity. Understanding the origin of the additional intensity is important in 
avoiding misassignment and misinterpretation. ‘H(5) to ‘H(3) magnetization transfer 
originates in any one of several different second-order processes including the following: 
(1) Magnetization transferred from ‘H(5) to ‘H(4) by cross-relaxation can be transferred 
by a successive cross-relaxation step from ‘H(4) to ‘H(3). Successive through-space 
transfers are more important for large molecules where T2 relaxation is more efficient 
than T, relaxation (spin diffusion limit) but they can produce finite effects here. (2) 
Magnetization transferred between protons 5 and 4 appears associated with proton 3 
because of the strong J coupling between protons 4 and 3. This strong coupling effect 
mixes the zero-order wavefunctions of 4 and 3 so that the eigenstate of proton 3 is 
some linear combination of the zero-order eigenstates of protons 4 and 3. In this way 
a fraction of magnetization transferred between protons 5 and 4 contributes to the 
resonances associated with proton 3. 

It is possible to evaluate the efficiency of the second-order transfer processes con- 
tributing to the cross peaks between ‘H( 5) and ‘H( 3) by setting various scalar couplings 
to zero. Setting J34 = 0 allows an assessment of the relative contribution of the second 
transfer process discussed above. When this is done, the cross peak at F, = 8.36 ppm, 
F2 = 7.91 ppm, corresponding to magnetization originating on spin 5 and residing 
during t2 on spin 3, decreases by 45%. Hence process (1) contributes 55% of the intensity 
of this second-order cross peak while the latter process contributes the remaining 45%. 

Apportionment of magnetization to different mechanisms as discussed above can 
lead to a better understanding of second-order effects in NOESY-type spectra and 
proper utilization of cross-peak intensities in geometric analysis. 
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