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A two-dimensional NMR simulation program has been constructed which is capable
of analyzing the effects of an arbitrarily complex sequence of hard pulses on a set of
homonuclear spin-§ nuclei. The program is capable of simulating spin systems with strong
J coupling and includes T relaxation due to pair-wise dipolar interactions. In this capacity
the program provides insight into the effects that strong coupling and dipolar spin-lattice
relaxation can introduce in common 2D NMR experiments. As an illustration of the
program, experimental and simulated NOESY data sets on 2,6-dicarboxynaphthalene are
presented, Good agreement is found between the experimental and simulated spectra.
Simulation of data sets with different mixing times, and different J couplings contributes
to an understanding of the origin of deviations from first-order behavior. © 1986 Academic

Press, Inc.

INTRODUCTION

Two-dimensional NMR has become a valuable tool for providing structural and
dynamic information on a wide range of molecules (/-3). Early applications, however,
assumed spectra to be first order to achieve a simple interpretation of the position and
magnitude of cross peaks in terms of molecular structure. As applications to more
and more complex molecules have been pursued an understanding of deviations from
simple first-order behavior and an understanding of new and more versatile 2D ex-
periments have become increasingly important. This understanding often requires
knowledge of phase properties of cross peaks (4) and second-order effects either from
strong coupling (5) or complex relaxation pathways (6). In many cases, this knowledge
cannot be obtained from the simple vector diagrams used to rationalize early pulse
NMR experiments or the more recent spin operator formalism (7, 8). Often a more
detailed solution in terms of density matrix methods is required. Density matrix ma-
nipulations are easily programmed on digital computers and the resulting programs
can offer both insight into the effects of various components of a pulse sequence
and simulation of expected results. Some versions of such programs have begun to
appear (9-11).

We present here a program developed in our laboratory capable of simulating the
effects of complex 2D pulse sequences on a homonuclear spin-4 system. The novel
aspects of the program include its ability to simulate strongly coupled spin systems
and the inclusion of T relaxation due to spin-pair dipolar interactions. It is well
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known that strong coupling can give rise to intensity anomalies and additional reso-
nances in 2D NMR spectra, and a computer program of this sort can provide insight
into how significant these types of effects might be.

In this manuscript we will briefly review the requisite density matrix equations and
give a short description of how the simulation program was constructed. In addition,
we will present experimental and simulated 2D NOE spectra on 2,6-dicarboxy-
naphthalene, a small molecule which can be approximated as containing a pair of non-
interacting, equivalent ABX spin systems.

THEORY

The density matrix equations necessary to describe the effects of arbitrarily complex
pulse sequences on a weakly coupled, nonrelaxing spin system have been described
by McClung et al. (9). We present here a similar approach which has been extended
to include the effects of strong J coupling and 7' relaxation.

The rotating-frame equation of motion of the density matrix, p(¢), is given by

a _

ar®
In Eq. [1] we will initially treat only the effects of scalar coupling, chemical shift, and
f pulses so that

l
5 e H]. (1]

H=H0+H1 [2]

where H, describes the interactions of the spins with the magnetic field in the rotating
frame as well as J-coupling effects and H, represents the contributions to H due to the

application of an rf field.
The application of a strong pulse along axis g(H, > Hy) allows straightforward

integration of Eq. [1]. Representation of p at the end of the pulse is given by

p(r") = R{O)p(t IR (6) (3]
where

R(6) = exp(if 2 1)) [4]

J
is the pulse rotation operator in a basis set representation in which Hp is diagonal,
R;(f) is the matrix adjoint of R/(f), and ¢~ and t" denote times immediately before
and after application of the rf pulse, respectively.
Evolution of p,s (@ # 8) during times when H; = 0 can also be described in terms

of a simple integrated form of Eq. [1]:

pep(t) = exp(i(w, — wa))pap(0)exp(—1/T%) (]

where w, and w; are the appropriate eigenvalues of Ho containing chemical-shift and
J-coupling information and p,s(0) is the a8 element of the density matrix after a pulse.
Transverse relaxation is included as a single constant 7% for convenience in calculation.
In general T3 will differ for different elements of the density matrix.

Pulse sequences are usually followed by observation of transverse magnetization.
Once the time dependence of p is known, evaluation of transverse magnetization,
M, + iM,, can proceed according to
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M, + iM, = yhTr{p(l, + i,)} [6]

where |, is the projection of spin angular momentum / along axis ¢ in a basis set
representation which diagonalizes Hy.

The spin angular momentum matrices, I, and 1, and the pulse rotation matrices,
R(0), discussed above are generated for an N-spin case by a direct product recursive
procedure similar to that used by McClung et al. in their simulation program (9).
Transformation to a basis set representation which diagonalizes H, is then accomplished
according to

T'oT {71

where T is a matrix of eigenvectors of Hy generated by standard matrix diagonalization
subroutines and O is the matrix which is to be transformed from the direct product
basis set to the basis set where Hy is diagonal. Calculation of magnetization at successive
time points generates an FID which can be Fourier transformed to yield a frequency
spectrum.

Introduction of spin relaxation into Eq. [1] is straightforward under certain limiting
cases: namely, that we consider only spin-lattice relaxation, that we assume that all
off-diagonal elements in p decay rapidly compared to T (T% < T,) and that we work
in a basis set that diagonalizes Hy. Under these assumptions relaxation can be included
by adding a single term to the diagonal elements of Eq. [1] so that they evolve according
to (12)

d

P 2" Roassloss — phs) (8]
! 8

where [p, H],. = O since Hy is diagonal. In Eq. [8] pgﬂ is the thermal equilibrium
element of the density matrix corresponding to eigenvector |8). For a collection of »
spins with 7 = }, R,z is an element of the 2" X 2" Redfield T relaxation matrix and
is given by (13)
1
Reags = ITe [2Japaswe = wg) = Sap 20 Jypyad @y = @g) — Bup 20 Jyays(@y — wp)l.  [9]
Y

¥

In Eq. [9]

o) = | CalOBHAF D yexo(iwrdn [10)

where H,(?) is the dipolar Hamiltonian at time 7, {|a)} is the set of eigenvectors of
Ho, 0.4 is the Kroenecker delta function, and the bar denotes an ensemble average.

In our simulation we will zero the off-diagonal elements of p at the onset of specified
relaxation periods. This eliminates cross-peaks which arise due to the excitation of all
orders of coherence by the 90°-£,-90° portion of the NOESY sequence. Experimentally
this is achieved by a stochastic variation of the mixing time or by application of a
gradient pulse at the start of the mixing period (/4). The assumptions used in modifying
Eq. [1] are in keeping with our primary objective of providing an assessment of the
contributions of strong J coupling to NOE spectra. These contributions are distinct
from the effects that give rise to the zero and high-order quantum J peaks discussed
by Ernst et al. (14) and will be elaborated on in the discussion.
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Evolution during a mixing or relaxation period can now be treated using Eq. [8]
which can be integrated to give

p() = p" + Qlexp(Q”'RQ)IQ™'((0)—p") (11]

where p(f) and p” are column vectors containing the on-diagonal elements of the
density matrix at time ¢ after the start of the relaxation period and at equilibrium,
respectively, R is the Redfield 7 relaxation matrix, and Q is a matrix containing the
eigenvectors of R.

Elements of the Redfield 7, relaxation matrix describing relaxation due to pairwise
dipolar interactions between spins were obtained by expressing the wavefunctions of
the spin system as linear combinations of the simple product wavefunctions using
coefficients determined by the eigenvectors of the Hamiltonian. R,.s; was then cal-
culated using Egs. [9] and [10] and assuming isotropic motion.

Figure 1 shows a flow chart illustrating the implementation of the simulation scheme
described above. The program was written in Fortran and was run on a Vax 11/750
computer making use of a CSPI Minimap array processor for most matrix manipu-
lations. Because the program has the capability of phase cycling both receiver and
pulse phases independently it is possible to carry out 2D simulations in quadrature
in both dimensions or to phase cycle to remove artifacts such as strong axial peaks
generated in 2D NOE experiments.

RESULTS

To test the program we have chosen to simulate a NOESY experiment on a molecule
of 2,6-dicarboxynaphthalene. The pulse sequence simulated in this study is (90°)¢,~
11~(90°)p-1—(90°)3—1, in which (90°)¢; is a hard rf pulse of phase ¢;, ¢, is the evolution
time, 7 is the mixing period, and ¢, is the acquisition period. The spin system simulated
was represented as a three-spin ABX case. A 1D spectrum of the molecule shows
strong scalar coupling between protons 3 and 4. Strong dipolar interactions exist be-
tween 'H(3) and 'H(4) and between 'H(4) and 'H(5) with a weaker interaction existing
between 'H(3) and 'H(5). In Fig. 2 the A spin is assigned to 'H(3) while the B and X
spins are assigned to protons 4 and 5, respectively. Shifts and coupling constants are
summarized in Table 1. Internuclear distances were obtained from a crystal structure
of napthalene (/5). The correlation time used in the simulation experiments was cal-
culated using the T, value of proton 5 and assuming that its only source of relaxation
is due to strong dipolar coupling with proton 4.

Figure 3a shows a simulated NOE experiment of protons 3, 4, 5 of the molecule

coo~

éoo - H(3)

H(5) H(4)
X B

FIG. 2. Molecular structure of 2,6-dicarboxynaphthalene.
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TABLE 1

Spectral Simulation Parameters

Chemical shift (ppm) Internuclear distance (nm) Coupling constants (Hz)
(53 =791 T3 = 0.244 .134 = 8.53
0s = 7.99 145 = 0.248 Jus < 0.7
&s = 8.36 135 = 0.475 Jis < 0.7

2,6-dicarboxynaphthalene with phase cycling to eliminate axial peaks. The carrier was
placed at one end of the spectrum since the set was not simulated with quadrature in
T,. Two hundred fifty-six experiments each containing 256 points were generated.

Figure 3b shows the experimental 2D NOESY spectrum of 2,6-dicarboxynaphthal-
ene at 298 K. 2,6-Dicarboxynaphthalene (dipotassium salt, Aldrich, Milwaukee, Wis.)
was dissolved in D,O to give a concentration of 0.05 A and the sample was purged
with N, for 5 min before sealing. EDTA (5 mM) was added to scavenge any para-
magnetic impurities in the sample. The data were acquired on a 250 MHz spectrometer
operating in the pulse Fourier transform mode. A 16 scan pulse sequence which sup-
presses axial peaks as well as double quantum coherence and allows for quadrature
in F, (n type) and F, was employed. A mixing delay of 3 s was chosen and was varied
stochastically to eliminate J cross peaks. One hundred twenty-eight experiments with
128 complex points per experiment were acquired. A sweep width of 300 Hz was
employed to give the same resolution as in the simulated spectra. Both data sets were
symmetrized.

Figures 4 and 5 show column cross-sections through resonances centered at
6 = 8.36 ppm and é = 7.89 ppm, respectively, from both simulated (a) and experimental
(b) data sets.

Both the experimental and the theoretical data sets were processed on a Vax
11/750 computer. In both cases the data were weighted by using the sine-bell weighting
function on all points in both dimensions, magnitude corrected, and zero-filled to give
a 1K by 1K matrix.

DISCUSSION

Figures 3, 4, and 5 show good qualitative agreement between the simulated and the
theoretical NOESY spectra of 2,6-dicarboxynaphthalene. A good representation of
the one-dimensional spectrum exists on the diagonal of Fig. 3 with A, B, and X peaks
at 7.91, 7.99, and 8.36 ppm relative to HDO. Cross peaks between protons 3 and 4
and protons 4 and 5 expected based on first-order analysis and the spatial proximity
of the spins (2.44 and 2.45 A) are seen at (7.99 ppm, 7.91 ppm), (7.91 ppm, 7.99
ppm) and (8.36 ppm, 7.99 ppm), (7.99 ppm, 8.36 ppm), respectively. A comparison
of cross-peak intensity ratios is presented in Table 2. We believe that there is good
agreement between simulated and experimental data sets. The deviations observed
very likely result from small errors in the internuclear distances input into the simu-
lation program. These distances were obtained from a refined crystal structure of
napthalene (15) in which proton positions were calculated based on idealized geom-
etries. For distances on the order of 2.5 A, an error of 5-10% can account for the
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FIG. 3. (a) Contour plot of a stmulated 2D NOE experiment on an ABX spin system using parameters
summarized in Table 1. (b) Contour plot of an experimental 2D NOE experiment on 2,6-dicarboxynaphthalene
using sweep widths and spectral parameters to correspond to those in a.

discrepancies between experiment and theory observed in this study. Other possible
sources of discrepancy between experimental and simulated data sets come about due
to the neglect of cross-correlation terms in expressions for the elements of the Redfield
relaxation matrix and the assumption of isotropic motion.
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FIG. 4. Simulated (a) and experimental (b) column cross-section through resonance centered at § = 8.36 ppm.

One of the important features of the simulation program lies in its capacity to
evaluate the relative importance of different pathways of magnetization transfer. For
example, the transfer of magnetization from 'H(3) to 'H(4) can originate in one of
two different processes. The first process, which is well understood, is an incoherent

PPM

FIG. 5. Simulated (a) and experimental (b) column cross-section through resonance centered at é = 7.89 ppm.
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TABLE 2

Intensities of Selected Column Cross-Sections

Column & Cross-section Observed Simulated
cross-section resonance intensity intensity

5 =836° 8.36 1 1
7.99¢ 0.18 0.12
7.90¢ 0.028 0.026

5 =1789° 8.36 0.060 0.044
8.01 0.23 0.22
7.97 0.060 0.044
7.91¢ 1 i

“ Integrated intensity of the doublet.
% Data normalized to singlet at = 8.36 ppm.
¢ Data normalized to doubled centered at § = 7.91 ppm.

transfer due to cross-relaxation between the interacting spins. This transfer is distance
dependent and is the one assumed to be operative in attempting a first-order analysis
in terms of molecular structure. The second transfer process arises purely from scalar
coupling and is distance independent. Its neglect can lead to errors in structure analysis.
This latter effect is due to unequal mixing of elements of transverse magnetization
into longitudinal magnetization by the 90°—£,-90° excitation sequence. Ernst ez al.
have shown that for a weakly coupled two-spin-} system on-diagonal elements of the
density matrix differing in the spin state of the first nucleus (e.g., {aalplaa) and
(BalplBe)) at the beginning of the mixing period contain equal intensity contributions
from magnetization evolving during ¢, at the characteristic frequency of the second
nucleus (74). A third 90° pulse produces magnetization associated with the first spin,
proportional to the difference of such on-diagonal elements. Because of the equality
of these elements no modulation at frequencies corresponding to the transition of the
second nucleus would occur. Strong coupling removes the equality between such ele-
ments so that in general some of the on-diagonal elements associated with the first
spin in the weak coupling case now contain different mixtures of frequency labeled
components of the second spin. Application of the third 90° pulse samples this in-
equality so that, for a two-spin system, an element of transverse magnetization in f,
will be a function of all four frequency labeled components in ¢,. The effects produced
are somewhat analogous to the transfer of magnetization which occurs in spin systems
containing resolvable J couplings which are excited with a pulse sequence of the form
(90°)p1—t,—(B)p2—7—(B)¢p3~t, with 8 # =/2 (16). In this case the first 8 pulse partly
converts out-of-phase magnetization, 21,1, into longitudinal two-spin order, 21,1,
which is subsequently converted into observable antiphase magnetization, 21,1, and
2I,,I;.., by the second 3 pulse (see Eq. [3] of (16)). In this way transverse magnetization
associated with spin k can be transferred to spin / even in the limit where 7 is small
compared to the inverse of the cross-relaxation rate. The latter mechanism, however,
is inoperative when f is set equal to 90°.

Contributions from these different processes can be evaluated by simulating spectra
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under certain limiting conditions. For example, by setting the mixing time to zero we
eliminate the dipolar mechanism of magnetization transfer between spins 3 and 4. In
this way, we have determined that 30% of the magnetization transferred between 'H(4)
and "H(3) occurs via cross-relaxation between these spins. The remaining 70% is there-
fore attributed to the scalar coupling mechanism. This is not surprising in lieu of the
highly second-order nature of the "H 34 spin system (J/6 = 0.44). In experimental
situations departures from first-order behavior are easily recognized. For example, the
multiplet components of the cross peaks centered at (7.91, 7.99) and (7.99, 7.91) are
highly asymmetric. In first order all four components of the cross peaks should have
equal intensity.

The appearance of cross peaks between protons 3 and 5 clearly cannot be interpreted
on a first-order basis since protons 3 and 5 are 4.75 A apart and first-order cross-
relaxation mechanisms should account for less than 10% of the 'H(5) to 'H(3) cross-
peak intensity. Understanding the origin of the additional intensity is important in
avoiding misassignment and misinterpretation. 'H(5) to '"H(3) magnetization transfer
originates in any one of several different second-order processes including the following:
(1) Magnetization transferred from 'H(5) to 'H(4) by cross-relaxation can be transferred
by a successive cross-relaxation step from 'H(4) to 'H(3). Successive through-space
transfers are more important for large molecules where 7> relaxation is more efficient
than T relaxation (spin diffusion limit) but they can produce finite effects here. (2)
Magnetization transferred between protons 5 and 4 appears associated with proton 3
because of the strong J coupling between protons 4 and 3. This strong coupling effect
mixes the zero-order wavefunctions of 4 and 3 so that the eigenstate of proton 3 is
some linear combination of the zero-order eigenstates of protons 4 and 3. In this way
a fraction of magnetization transferred between protons 5 and 4 contributes to the
resonances associated with proton 3.

It is possible to evaluate the efficiency of the second-order transfer processes con-
tributing to the cross peaks between 'H(5) and 'H(3) by setting various scalar couplings
to zero. Setting J34 = 0 allows an assessment of the relative contribution of the second
transfer process discussed above. When this is done, the cross peak at F;, = 8.36 ppm,
F, = 7.91 ppm, corresponding to magnetization originating on spin 5 and residing
during 7, on spin 3, decreases by 45%. Hence process (1) contributes 55% of the intensity
of this second-order cross peak while the latter process contributes the remaining 45%.

Apportionment of magnetization to different mechanisms as discussed above can
lead to a better understanding of second-order effects in NOESY-type spectra and
proper utilization of cross-peak intensities in geometric analysis.
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