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Numerical evaluation of the evolution of magnetization during an off-resonance spin-lock


Consider a two-site exchanging system, , where the populations of the ground (G) and excited (E) states are given by pG and pE, as described in the text. The time evolution of magnetization that is ‘locked’ along an off-resonance spin-lock field can be described by 


    	[S1]
												





where ,  are the j  {X,Y,Z} magnetization components for G and E, respectively,  and  are the intrinsic transverse relaxation rates, w1 (rad/sec) is the strength of the spin-lock field applied along the X axis, =G-SL, with G, SL the positions of the ground state resonance and the applied spin-lock, respectively and Dw = wE – wG. The longitudinal relaxation rates for corresponding nuclei in G and E are assumed to be equal. Extra terms that reflect equilibrium Z-magnetization that would normally be included (Allard et al., 1998) have been set to 0 in these expressions since experiments are recorded in a manner whereby the spin-locked magnetization decays to zero (Sklenar et al., 1987). Immediately prior to the application of the spin-lock field, before the first ‘red’ pulse of Figure 1c, it is assumed that only Z-magnetization for both G and E is present, in the fractional amounts given by pG and pE, respectively. Note that the delay of duration teq following point b in Figure 1c allows equilibration of the populations of both exchanging states so that 

+ 								           [S2]
where the superscript ‘+’ denotes transpose so that I is a column vector (corresponding to the vector in Eq. [S1]). Application of a q pulse (first red pulse of Figure 1c), tanq = w1/W, along the Y axis rotates the vector given in Eq [S2] 

+ 				           [S3]
so that the magnetization is ‘placed’ along the spin-lock axis. Subsequently, the effects of relaxation can be accounted for by solving Eq. [S1] numerically

 								           [S4]
where M is the 6x6 matrix given in Eq. [S1]. Following the spin-lock period magnetization is rotated by a q pulse along –Y and only the Z-component of the ground state magnetization is retained. Thus,

									           [S5]

and  							           [S6]


where is the magnetization vector for G (i.e., a 3x1 vector, containing the first 3 elements of ) and R(q) is a rotation matrix that rotates magnetization back to the Z-axis after the spin-lock. 

	Eq. [S1] can be used to evaluate the optimal experimental values of  and w1 for each methyl group for which the sign of DvC is sought. This is achieved by maximizing the difference
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as a function of  and w1 where the Z-component of the vector  is proportional to . This is calculated by setting , Dw = |Dw| in Eq. [S1], with tanq = w1/|| and . The value of |wex| can be calculated from Eq. [3] of the text or as described below using {|C|,kex,pE,R2} obtained from 13C methyl RD CPMG studies. Note that is calculated as the Z-component of  obtained by substitution of  and Dw = |Dw| in Eq. [S1], with tanq = -w1/|| (i.e., q in Eqs. [S3],[S5],[S6] replaced by –q). Values of  were obtained from the plateau values in CPMG dispersion curves, while R1 was set to 2.5 s-1. Typically  is set to  unless estimates of  are obtained from spin-state selective experiments (Hansen et al., 2009). For |DvC| > |Cmin| optimal values are relatively insensitive to DR2. All other values used in the calculations are those fitted from dispersion profiles.

Numerical evaluation of wex=2pnex
The equations describing the evolution of transverse magnetization can be written compactly as 

 				            [S8] 
where I+ = IX + iIY. In Eq. [S8] it has been assumed (without loss in generality) that the spin in the ground state is on resonance. The imaginary part of the eigenvalue for G gives the exchange induced shift of the ground state resonance position, wex.





Table S1 C values measured directly from samples of apo- and ligand-bound Abp1p SH3, 5oC (Baldwin et al., 2009) along with optimized  and n1 calculated as described in the text (kex=160 s-1, pE =7.5%). The signs obtained from the R1 and the H(S/M)QC measurements are indicated, together with the predicted value of  (Eq. [7] of the text, Trelax = 40 ms). 
	
	c (direct) (ppm)
	
 (Hz)
	n1 (Hz)
	Sign (R1)
	Sign (H(S/M)QC)
	 (%)

	Leu491
	+2.33
	446
	99.5
	 +
	 +
	33.8

	Val321
	+1.44
	267
	79.5
	 +
	 +
	31.9

	Val322
	-1.44
	267
	79.5
	-
	-
	31.9

	Leu382
	-0.34
	80
	42.9
	 -
	 -
	23.9

	Val551
	-0.41
	62
	37.6
	 -
	 -
	23.9

	Leu182
	-0.36
	53
	34.3
	 -
	 -
	19.7

	Leu381
	-0.34
	48
	32.2
	 -
	 -
	18.7

	Leu492
	+0.28
	39
	28.6
	 +
	 +
	16.3

	Leu181
	+0.27
	37
	28.0
	 +
	 +
	15.7

	Val552
	-0.27
	37
	27.6
	 -
	 -
	15.4

	Ile261
	-0.10
	16
	17.6
	 -
	-
	3.1

	Leu571
	-0.06
	16
	18.9
	
	
	0.8

	Leu411
	+0.05
	4
	6.7
	
	
	0.1

	Val212
	-0.04
	4
	5.3
	
	
	0.1
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