

Supporting Information for:

**Cross Validation of the Structure of a Transiently Formed and Low Populated FF-
Domain Folding Intermediate Determined by Relaxation Dispersion NMR and CS-**

Rosetta

Julia Barette, Algirdas Velyvis, Tomasz L. Religa, Dmitry M. Korzhnev and Lewis E.
Kay

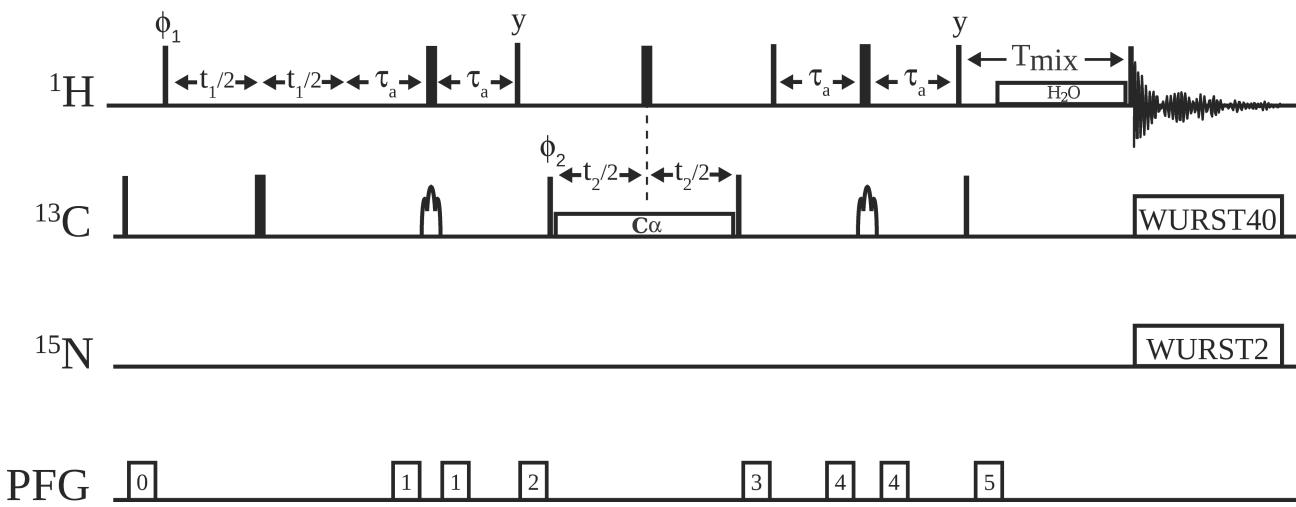


Figure S1. Pulse scheme for measurement of NOEs from Ala residues. Correlations of the form ($\omega^1\text{H}_{\text{ALA}}, \omega^{13}\text{C}_{\text{ALA}}, \omega^1\text{H}$) are detected where $\omega^1\text{H}_{\text{ALA}}$ and $\omega^{13}\text{C}_{\text{ALA}}$ are Ala methyl chemical shifts and $\omega^1\text{H}$ is the chemical shift of a proximal proton. All narrow (wide) rectangular pulses are applied with 90° (180°) flip angles along the x axis, and unless indicated otherwise at the highest possible power levels. ^1H and ^{13}C radio frequency carriers are positioned at water and 19 ppm, respectively, until signal acquisition when the carbon carrier jumps to 75 ppm. During the mixing time a 30 Hz ^1H saturation field is applied to the water line. Shaped ^{13}C pulses (2 ms, Re-Burp profile¹, centered at 21.5 ppm, 800 MHz) are selective to excite primarily $^{13}\text{C}^\beta$ of Ala (along with other methyl spins). $^{13}\text{C}^\alpha$ decoupling during t_1 is achieved using constant adiabaticity WURST-8 decoupling², sweeping from 50 to 58 ppm. A second field is applied, swept from -12 to -20 ppm, to reduce Bloch-Siegert effects for the Ala methyl ^{13}C spins³. The net decoupling field strength is 0.59 kHz (rms 0.33 kHz). ^{13}C broad-band decoupling is achieved with a 2.6 kHz (max rf; 2.3 kHz rms) WURST-40 field centered at 75 ppm². ^{15}N decoupling during acquisition was carried out using a WURST-2 field², with a bandwidth of 27 ppm,

centered at 116.5 ppm (0.75 kHz max rf; 0.46 kHz rms). The value of τ_a is set to 2 ms.

The phase cycle is $\phi_1=x,-x$; $\phi_2=2(x),2(-x)$; $\text{rec}=x,2(-x),x$. Quadrature in F_1 is achieved by

States-TPPI⁴ of ϕ_2 . The gradient durations (ms) and strengths (G/cm, along Z) are:

$g0=(1,10)$, $g1=(0.3,20)$, $g2=(1,24)$, $g3=(1.4,-40)$, $g4=(0.5,-24)$, $g5=(0.8,20)$.

Table S1. Structural statistics on the 10 lowest energy structures with no violations out of 100 calculated for I' using XPLOR-NIH⁵.

Restraints used for structure calculations

NOE distances	121
Dihedral angles	58

Average RMSD from idealized covalent geometry

Bond (Å)	0.0016±0.0002
Bond angles (°)	0.376±0.004
Improper (°)	0.323±0.068

Average RMSD from experimental distance restraints

NOEs (Å)	0.033±0.012
----------	-------------

Average RMSD within the structural ensemble

Backbone atoms (Å)	0.79±0.23
Heavy atoms (Å)	1.22±0.25

Procheck⁶ Ramachandran analysis

Residues in most favoured regions	85.0%
Residues in additional allowed regions	12.5%
Residues in generously allowed regions	2.5%
Residues in disallowed regions	0.0%

References

- (1) Geen, H.; Freeman, R. *J. Magn. Reson.* **1991**, *93*, 93-141.
- (2) Kupce, E.; Freeman, R. *J. Magn. Reson., Ser. A* **1995**, *115*, 273-276.
- (3) Zhang, S. M.; Gorenstein, D. G. *J. Magn. Reson.* **1998**, *132*, 81-87.
- (4) Marion, D.; Ikura, M.; Tschudin, R.; Bax, A. *J. Magn. Reson.* **1989**, *85*, 393-399.
- (5) Schwieters, C. D.; Kuszewski, J. J.; Tjandra, N.; Clore, G. M. *J. Magn. Reson.* **2003**, *160*, 65-73.
- (6) Laskowski, R. A., MacArthur, M.W., Moss, D.S., Thornton, J.M. *J. App. Cryst.* **1993**, *26*, 283-291.