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Figure S1. A comparison between the experimentally determined equilibrium oligomer 

distribution of B-crystallin at pH 5, 37oC (red) with the distributions predicted from 

four simple aggregation models, each characterised by a single free parameter. Two of 

the aggregation models assume that subunit exchange is due solely to monomer hopping 

(helical polymerisation, dark blue and the model considered in the text and referred to 

here as a modified helical polymerisation model, black). An additional two models, 

termed here ‘splinter’ models, assume that subunit exchange is mediated by the 

spontaneous dissociation and recombination of oligomers of arbitrary size. The 

distributions shown were obtained by numerically evaluating the kinetic equations shown 

below to determine the equilibrium oligomer size profiles for a given ratio of the 

association and dissociation rates M
A


k  [P
1
]

k -
 in the case of helical and modified helical 

polymerisation models and 
k 

k -
 in the case of the splinter models.  These ratios were 



systematically varied to find the distribution that best matches the experimental data. 

Only the model described in the text (black) gives rise to a peaked distribution function 

that resembles the experimental data. 

 

Helical Polymerisation Model: 

Subunit exchange involving only monomers is considered, ii PPP  11 . The rate of 

change of an oligomer of size i, is given by 
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for 2≤i<N where 
ik  and 

ik  are oligomer dependent association and dissociation rates 

and N is the largest oligomer size in the distribution. Setting   kki and   kki reduces 

the number of required rate constants from 2(N-1) to 2, and results in the equilibrium 

distributions observed in both the linear and helical polymerisation aggregation models 1. 

The distribution at equilibrium depends only on the product of the association rate and 

the free monomer concentration, and on dissociation rate,  kPkM A /][ 1 . The only 

stable equilibrium distribution arises in the limit where k+[P1]<k- and follows an 

exponential decay,  Ai MiP lnexp][  . Such a distribution is in poor agreement with the 

experimentally observed distribution (dark blue). Setting 
  kki and   ikki , as in the 

model described in the main text, results in a Poisson distribution at equilibrium that is in 

excellent accord with the experimentally observed profile (black).  

Splinter Model: 

An additional exchange scheme can be conceived, termed here the ‘Splinter model’, 

where formation and destruction of an oligomer of size i proceeds by the collision and 



dissociation of combinations of fragments of different sizes (for example, 

kjijk PPP  ). In this scheme the time evolution of an oligomer of size i is given by  
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where  = i/2 and (i-1)/2 for even and odd i, respectively and the forward and backward 

rates are 
ik  and 

ik . The terms grouped together in the first sum reflect the fact that an 

oligomer of size i can be formed by the collision of any two smaller oligomers whose 

combined size is equal to i (first term), or destroyed by breaking into two oligomers of 

smaller sizes (second term). The terms in the second sum correspond to removal of an 

oligomer of size i from solution through a binding event involving another oligomer to 

form a new, larger oligomer of size j (first term) or formation of an oligomer of size i by 

decomposition of a larger aggregate of size j (second term). The final sum ‘corrects’ for 

the fact that when a pair of equivalent oligomers (Pi) combine 2 molecules of Pi are lost 

(first term) and when P2i dissociates into Pi, two molecules of Pi are produced (second 

term). 

Using similar simplifying assumptions for the rate equations as described for the 

monomer hopping model, we set   kki and   kki and numerically evolve the system 

from an arbitrary starting distribution to its natural equilibrium distribution, that depends 

only on the ratio k+/k -. This ratio was optimised to give the distribution in best agreement 

with the experimental data (pink). Finally, setting   kki and   ikki  and again 

optimising the ratio of k+/k- results in the distribution shown in light blue. The best fitting 

distributions in both cases are similar in form to those arising from the helical 



polymerisation model and do not reproduce the experimental data. Of all the models 

considered here, (with similar levels of complexity) only the scheme considered in detail 

in the text predicts equilibrium distributions that are consistent with the experimentally 

observed oligomer size distribution of B-crystallin at pH5.  

 

 



 

Figure S2.  Quality of fits of the monomer exchange model (see text) to the MS data. A -  

Oligomers in the range 10-40mers were detected in the MS experiment. The 14 oligomers 

in the range 21-34 were present at concentrations where they could be reliably quantified 

at each solution condition. 25 pH and temperature combinations were examined in this 

study. The experimentally observed oligomer distributions at each pH and temperature 

condition was fitted to the exchange model described in the text so that two independent 

free energies, Ge+d and Gd, were obtained. The correlation between the experimentally 

determined oligomer concentrations and those calculated from the fitted parameters for 

all experimentally determined distributions are shown (350 individual oligomer 

concentrations), requiring 50 parameters, two for each pH/temperature condition. The 

Pearson’s R2 correlation coefficient for the entire dataset of 350 measurements is 0.92, 

and the global RMSD to the y=x line is 0.65 M, indicating that the average uncertainty 

in each concentration measurement is approximately 6% of the concentration of the most 

populated oligomer. B – The rate 
dek  was determined by back calculating time 

dependent m/z vs intensity profiles as described in the text. The quantity exp(-(2-2
min)/ 
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2) is proportional to the probability of a given 
dek  rate being the best-fitting parameter2. 

The width of the resulting peaks on the probability surface is directly related to the 

uncertainty in the given fitting parameter. Here, the fitting error for the rates extracted 

from the 25 datasets was found to be on the order of 5%, a value in line with the 

variations obtained when the measurement was repeated. Shown are the results for the 

data obtained at 37oC rates as a function of pH. 



 

Figure S3. Distributions and fits of the phosphomimics S19D, S19/45D and S19/45/59D 

at 37oC and pH 7. The distribution of S19D is comparable to the wild type under the 

same conditions, the distribution of S19/45D is at pH7 is comparable to the wild type 

distribution at pH6 and the distribution of S19/45/59D at pH7 is comparable to the wild 

type distribution at pH5.  
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Table S1 - Activation parameters from the temperature dependencies of k[P1] , ked
 and 

ke
  obtained from fitting mass spectrometry kinetic data (Fig. 5) to the Eyring equation 

Eq. S1a.  

  H* (kJmol-1) S* (Jmol-1K-1)

pH 5 k[P1]  158 ± 12 259 ± 39 

 ked
  156 ± 11 277 ± 38 

 ke
  172 ± 14 289 ± 47 

pH 9 k[P1]  298 ± 10 663 ± 32 

 ked
  298 ± 10 633 ± 32 

 ke
  298 ± 10 661 ± 32 

 

aValues of k[P1] ,  ked
 and  ke

 , obtained as a function of temperature, in the range 20oC - 

50oC, and at pH 5 and pH 9 were found to show Arrhenius behaviour, allowing activation 

parameters H* and S* to be calculated. These were obtained, following transition state 

theory 

      krate   exp 
G

RT






  exp 

H  TS

RT







                                                (S1)  

where  is the transmission coefficient, 
h

TkB , T is the temperature, k
B
 is Boltzmann’s 

constant and h  is Planck’s constant. The value of  was taken to be 3000 s-1 3.  



Supplemental References 

1. Oosawa, F. & Kasai, M. (1962). A theory of linear and helical aggregations of 
macromolecules. J Mol Biol 4, 10-21. 

2. (2007). Numerical Recipes, Cambridge University Press. 
3. Fersht, A. (1998). Structure and Mechanism in Protein Science, W.H. Freeman, 

New York. 
 
 


