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Bloch-McConnell Equations

For a two-site exchange process interconverting states G and E, , the evolution of spin coherence X that is not coupled to any other spin can be written as follows

 	 (S1)


where Xi is the ‘amount’ of coherence X in the exchanging state i,  is the Larmor frequency (rad.s-1) of Xi and Ri its relaxation rate (McConnell 1958). The evolution frequencies of G and E, including contributions from exchange, can be obtained from the imaginary parts of the two eigenvalues of the matrix on the right-hand-side of eq S1. It is thus possible to calculate the shift of the peak corresponding to state G in spectra recorded at a different static magnetic fields, , so long as the parameters of the exchange process are known.
Sample Preparation
[U-2H,15N] enriched Pfl6 I58D was obtained by IPTG-induced protein over-expression in E. coli BL21(DE3) in M9 minimal medium with 99.9% D2O and [12C6,2H7]-glucose, following a previously described protocol (Roessler et al. 2008). The NMR sample was 1.4 mM in protein, 2 mM EDTA, 2 mM NaN3, 50 mM sodium phosphate, pH 6.2, 90%H2O,10% D2O. A sample of 1.2 mM [U-2H,13C,15N] A39V/N53P/V55L Fyn SH3, 0.2mM EDTA, 0.05% NaN3, 50 mM sodium phosphate, pH 7.0, 90% H2O,10% D2O was prepared as described in detail previously (Neudecker et al. 2006). A sample of [U-2H,15N] enriched WT FF domain was generated as previously described (Korzhnev et al. 2007). The sample contained 1.0 mM [U-2H,15N] protein, 50 mM sodium acetate, 100 mM NaCl, 0.05% (w/v) NaN3, 0.2 mM EDTA (pH 5.7), 90%H2O,10% D2O.

NMR Spectroscopy and Data Analysis







Single quantum 1HN relaxation dispersion profiles (Ishima and Torchia 2003) were recorded at 5 °C for Pfl6 I58D, at 30 °C for the WT FF domain and at 20 °C for the A39V/N53P/V55L Fyn SH3 domain. Data were obtained at static magnetic fields strengths of 11.7 and 18.8 T. Relaxation dispersion profiles, , were generated from peak intensities, , in a series of 2D 1HN-15N correlation maps measured as a function of CPMG frequency, , where  is the interval between consecutive 180°-refocusing pulses of the CPMG sequence. Effective relaxation rates were calculated as , where  is the peak intensity in a reference spectrum recorded without the relaxation delay  (Tollinger et al. 2001).
All data sets were processed and analyzed with the NMRPipe program (Delaglio et al. 1995) and signal intensities were quantified using the program FuDA (http://pound.med.utoronto.ca/software.html) or MUNIN (Korzhnev et al. 2001; Orekhov et al. 2001). Relaxation dispersion data were analyzed using a two-state exchange model and the best-fit model parameters were extracted as described previously (Hansen et al. 2008) using the program CATIA, which is available from http://pound.med.utoronto.ca/software.html. Briefly, the parameters are obtained by minimization of the target function,

	 (S2)





where and  are experimental effective relaxation rates and their uncertainties, respectively,  are calculated relaxation rates obtained by numerical integration of the Bloch-McConnell equation (McConnell 1958),  denotes the set of adjustable model parameters (including ) and the summation in eq S2 is over the number of experimental data points.
[1H, 15N]-HSQC spectra were recorded with the following parameters: (1) Pfl6 I58D (t1, t2) = (103.0, 64.0) ms at 11.4 T and (t1, t2) = (89.5, 64.0) ms at 18.8 T, (2) WT FF domain (t1, t2) = (117.8, 64.0) ms at 11.4 T and (t1, t2) = (99.5, 64.0) ms at 18.8 T, (3) A39V/N53P/V55L Fyn SH3 domain (t1, t2) = (145.2, 64.0) ms at 11.4 T and (t1, t2) = (121.0, 64.0) at 18.8 T. [1H, 15N]-HMQC spectra were recorded on the Pfl6 I58D sample with (t1, t2) values identical to those used for the HSQC spectra. After extensive zero-filling, peak positions were determined by two-dimensional parabolic interpolation (Press et al. 2007). Overlapped peaks for which no maximum could be defined were discarded from the analysis. 

Bootstrap Analysis


Errors on fitted  and calculated  values were determined by a standard bootstrap analysis (Press et al. 2007): 

1) 1000 ‘re-sampled’ data sets of the same size as the original 1HN relaxation dispersion data set were generated by randomly picking  points from the original data set – the same point could be picked once, several times or not at all.





2) The dispersion profiles  generated in step (1) were independently fitted to extract  for each residue, assuming previously fitted values for pE and kex. Simultaneously, exchange-induced shifts  were calculated for each profile by numerically solving the Bloch-McConnell equations, S1, using the exchange parameters . 




4) Errors on fitted  and calculated  values were estimated as the standard deviation of  and , respectively, for each residue.
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