Supporting Information

Figure shows histograms of operative relaxation rates in the 13C-1H correlation pulse sequences that are compared in the present study and pulse programs for recording spectra on 13CHD2-labeled proteins.
Figure S1. Relaxation times for relevant coherences in 13C,1H correlation pulse schemes that are compared in the manuscript. Relaxation times are measured on samples of U-[2H], Ile-[13CH3 1], Leu,Val-[13CH3,12CD3] and U-[2H], Ile-[13CHD2 1], Leu,Val-[13CHD2,13CHD2] 77, 50oC, 800 MHz.
a) CHD2 13C single-quantum T2 (s)

[image: image1.emf]0.02 0.06 0.10 0 2 4 6 I Avg. 0.037 Frequency 0.02 0.06 0.10 0 5 10 15 L Avg. 0.025 0.02 0.06 0.10 0 2 4 6 8 12 V Avg. 0.025 T2(s) 10

b) CHD2 13C single-quantum TROSY T2 (s)

[image: image2.emf]0.04 0.08 0.12 0.16 0 2 4 6 8 I Avg. 0.058 Frequency 0.04 0.08 0.12 0.16 0 2 4 6 8 L Avg. 0.063 0.04 0.08 0.12 0.16 0 2 4 6 8 10 V Avg. 0.057 T2(s) 10

c) CH3 1H-13C slowly relaxing multiple quantum T2 (s)

[image: image3.emf]0.02 0.06 0 1 2 3 4 5 6 I Avg. 0.042 Frequency 0.02 0.06 0 2 4 6 8 10 L Avg. 0.032 0.02 0.06 0 2 4 6 8 V Avg. 0.037 T2(s) 0.08 0.04 0.08 0.04 0.08 0.04 10

d) CHD2 1H single-quantum T2 (s)

[image: image4.emf]0.01 0.03 0.05 0.07 0 1 2 3 4 5 6 I Avg. 0.030 Frequency 0.01 0.03 0.05 0.07 0 5 10 15 L Avg. 0.020 0.01 0.03 0.05 0.07 0 5 10 15 V Avg. 0.022 T2(s)

e) CHD2 1H single-quantum TROSY T2 (s)

[image: image5.emf]0.02 0.06 0 1 2 3 4 5 I Avg. 0.037 Frequency 0.02 0.06 0 5 10 15 L Avg. 0.024 0.02 0.06 0 4 8 12 V Avg. 0.026 T2(s) 0.08 0.04 0.08 0.04 0.08 0.04

f) CH3 1H slowly relaxing T2 (s)

[image: image6.emf]0.02 0.06 0 1 2 3 4 5 6 I Avg. 0.031 Frequency 0.02 0.06 0 2 4 6 8 12 L Avg. 0.024 0.02 0.06 0 2 4 6 8 10 V Avg. 0.027 0.08 0.04 0.08 0.04 0.08 0.04 T

2

(s

) 10

Pulse sequences:

/* BEGIN hsqc_c13_trosy_lek_800.c */
 ADDIN EN.CITE

(Nietlispach, 2005; Pervushin et al., 1997)

/* hsqc_c13_trosy_lek_800.c

 This pulse sequence will allow one to perform the following

 experiment:

 TROSY 2D correlation of 1H and 13C.

 Used for high resolution high sensitivity 13C spectrum.

 Uses three channels:

 1) 1H - carrier

 2) 13C - carrier

 3) 15N - carrier

 Set dm = 'nnny', dmm = 'cccp' [13C decoupling during acquisition].

 and dm2 = 'nnnn'

 Must set phase = 1,2 for States-TPPI

 acquisition in t1 [13C].

 The flag f1180 should be set to 'y' if t1 is

 to be started at halfdwell time. This will give -90, 180

 phasing in f1. If it is set to 'n' the phasing will

 be 0,0 and will still give a perfect baseline.

 Written by Lewis E. Kay on Jan. 6, 2010

*/

#include <standard.h>

static int phi1[1] = {0},

 phi2[4] = {0,1,2,3},

 phi3[1] = {0},

 rec[2] = {0,2};

static double d2_init=0.0;

pulsesequence()

{

/* DECLARE VARIABLES */

 char fsat[MAXSTR],

 fscuba[MAXSTR],

 f1180[MAXSTR], /* Flag to start t1 @ halfdwell */

 mess_flg[MAXSTR], /* 1H magnetization purging followed

 by realxation delay */

 N_flg[MAXSTR],

 D_flg[MAXSTR];

 int phase, ni, icosel,

 t1_counter; /* used for states tppi in t1 */

 double tau1, /* t1 delay */

 taua, /* ~ 1/4JCH = 1.7 ms */

 dly_pg1, /* delay for water purging */

 pwc, /* 90 c pulse at dhpwr */

 pwn, /* 90 N at dhpwr2 */

 tsatpwr, /* low level 1H trans.power for presat */

 tpwrmess, /* power level for water purging */

 dhpwr, /* power level for high power 13C pulses on dec1 */

 dhpwr2, /* power level for high power 15NC pulses on dec2 */

 sw1, /* sweep width in f1 */

 tof_me,

 dpwr3,

 pwd1,

 dpwr3_D,

 pwd,

 gt0,

 gt1,

 gt2,

 gt3,

 gt4,

 gt5,

 gt6,

 gzlvl0,

 gzlvl1,

 gzlvl2,

 gzlvl3,

 gzlvl4,

 gzlvl5,

 gzlvl6;

/* variables commented out are already defined by the system */

/* LOAD VARIABLES */

 getstr("fsat",fsat);

 getstr("f1180",f1180);

 getstr("fscuba",fscuba);

 getstr("mess_flg",mess_flg);

 getstr("N_flg",N_flg);

 getstr("D_flg",D_flg);

 taua = getval("taua");

 pwc = getval("pwc");

 pwn = getval("pwn");

 dly_pg1 = getval("dly_pg1");

 tpwr = getval("tpwr");

 tsatpwr = getval("tsatpwr");

 tpwrmess = getval("tpwrmess");

 dhpwr = getval("dhpwr");

 dhpwr2 = getval("dhpwr2");

 dpwr = getval("dpwr");

 phase = (int) (getval("phase") + 0.5);

 ni = (int) (getval("ni"));

 sw1 = getval("sw1");

 tof_me = getval("tof_me");

 pwd1 = getval("pwd1");

 pwd = getval("pwd");

 dpwr3 = getval("dpwr3");

 dpwr3_D = getval("dpwr3_D");

 gt0 = getval("gt0");

 gt1 = getval("gt1");

 gt2 = getval("gt2");

 gt3 = getval("gt3");

 gt4 = getval("gt4");

 gt5 = getval("gt5");

 gt6 = getval("gt6");

 gzlvl0 = getval("gzlvl0");

 gzlvl1 = getval("gzlvl1");

 gzlvl2 = getval("gzlvl2");

 gzlvl3 = getval("gzlvl3");

 gzlvl4 = getval("gzlvl4");

 gzlvl5 = getval("gzlvl5");

 gzlvl6 = getval("gzlvl6");

/* LOAD PHASE TABLE */

 settable(t1,1,phi1);

 settable(t2,4,phi2);

 settable(t3,1,phi3);

 settable(t4,2,rec);

/* CHECK VALIDITY OF PARAMETER RANGES */

 if(D_flg[A] == 'y')

 if((ni-1)/sw1 > 0.05) {

 printf("acq time in t1 is too long\n");

 abort(1);

 }

 if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' || dm[D] == 'y'))

 {

 printf("incorrect dec1 decoupler flags! ");

 abort(1);

 }

 if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y'))

 {

 printf("incorrect dec2 decoupler flags! ");

 abort(1);

 }

 if(tsatpwr > 6)

 {

 printf("TSATPWR too large !!! ");

 abort(1);

 }

 if(dpwr > 48)

 {

 printf("don't fry the probe, DPWR too large! ");

 abort(1);

 }

 if(dpwr2 > -16)

 {

 printf("don't fry the probe, DPWR2 too large! ");

 abort(1);

 }

 if(pw > 200.0e-6)

 {

 printf("dont fry the probe, pw too high ! ");

 abort(1);

 }

 if(gt0 > 3e-3 || gt1 > 3e-3 || gt2 > 3e-3 || gt3 > 3e-3 ||

 gt4 > 3e-3 || gt5 > 3e-3 || gt6 > 3e-3)

 {

 printf("gradients on for too long. Must be < 3e-3 \n");

 abort(1);

 }

 if(dpwr3 > 55) {

 printf("dpwr3 is too high; < 56\n");

 abort(1);

 }

 if(dpwr3_D > 55) {

 printf("dpwr3_D is too high; < 56\n");

 abort(1);

 }

/* Phase incrementation for hypercomplex 2D data */

 if (phase == 2) {

 tsadd(t3,2,4);

 icosel = -1;

 }

 else

 icosel = 1;

/* Set up f1180 tau1 = t1 */

 tau1 = d2;

 if(f1180[A] == 'y') {

 tau1 += (1.0 / (2.0*sw1));

 }

 tau1 = tau1/2.0;

 if(tau1 < 0.2e-6)

 {

 printf("t1/2 %e -> 0.2e-6",tau1);

 tau1 = 0.2e-6;

 }

/* Calculate modifications to phases for States-TPPI acquisition */

 if(ix == 1) d2_init = d2 ;

 t1_counter = (int) ((d2-d2_init)*sw1 + 0.5);

 if(t1_counter % 2) {

 tsadd(t1,2,4);

 tsadd(t4,2,4);

 }

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);

 offset(dof,DODEV);

 rlpower(tsatpwr,TODEV); /* Set transmitter power for 1H presaturation */

 rlpower(dhpwr,DODEV); /* Set Dec1 power for hard 13C pulses */

 rlpower(dhpwr2,DO2DEV); /* Set Dec2 power for hard 15N pulses */

 obsoffset(tof);

/* Presaturation Period */

status(B);

 if(mess_flg[A] == 'y') {

 rlpower(tpwrmess,TODEV);

 txphase(zero);

 rgpulse(dly_pg1,zero,2.0e-6,0.0);

 rgpulse(dly_pg1/1.62,one,2.0e-6,0.0);

 rlpower(tsatpwr,TODEV);

 }

 if (fsat[0] == 'y')

 {

 delay(2.0e-5);

 rgpulse(d1,zero,2.0e-6,0.0);

 rlpower(tpwr,TODEV); /* Set transmitter power for hard 1H pulses */

 delay(2.0e-5);

 if(fscuba[0] == 'y')

 {

 delay(2.2e-2);

 rgpulse(pw,zero,2.0e-6,0.0);

 rgpulse(2*pw,one,2.0e-6,0.0);

 rgpulse(pw,zero,2.0e-6,0.0);

 delay(2.2e-2);

 }

 }

 else

 {

 delay(d1);

 }

 rlpower(tpwr,TODEV); /* Set transmitter power for hard 1H pulses */

 txphase(zero);

 dec2phase(zero);

 decphase(zero);

 delay(1.0e-5);

/* Begin Pulses */

status(C);

 rcvroff();

 obsoffset(tof_me);

 delay(20.0e-6);

 delay(2.0e-6);

 rgradient('z',gzlvl0);

 delay(gt0);

 rgradient('z',0.0);

 delay(250.0e-6);

/* this is the real start */

 rgpulse(pw,two,2.0e-6,0.0); /* Ensure initial 13C polarization adds */

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(2.0e-6);

 delay(taua - gt1 - 4.0e-6); /* taua <= 1/4JCH */

 simpulse(2*pw,2*pwc,zero,zero,0.0,0.0);

 txphase(one); decphase(one);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(2.0e-6);

 delay(taua - gt1 - 4.0e-6);

 rgpulse(pw,one,0.0,0.0);

 txphase(zero);

 delay(2.0e-6);

 rgradient('z',gzlvl2);

 delay(gt2);

 rgradient('z',0.0);

 delay(250.0e-6);

 if(D_flg[A] == 'y') {

 lk_hold();

 delay(20.0e-6);

 /* 2D decoupling on */

 dec3phase(one);

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3unblank();

 dec3power(dpwr3_D);

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* 2D decoupling on */

 }

 decrgpulse(pwc,t1,2.0e-6,0.0);

 decphase(t2);

 delay(tau1);

 if(N_flg[A] == 'y')

 dec2rgpulse(2.0*pwn,zero,0.0,0.0);

 delay(tau1);

 if(D_flg[A] == 'y') {

 /* 2D decoupling off */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3phase(three);

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* 2D decoupling off */

 }

 delay(2.0e-6);

 rgradient('z',-1.0*icosel*gzlvl3);

 delay(gt3);

 rgradient('z',0.0);

 delay(250.0e-6);

 decrgpulse(2.0*pwc,t2,0.0,0.0);

 decphase(t3);

 delay(2.0e-6);

 rgradient('z',icosel*gzlvl3);

 delay(gt3);

 rgradient('z',0.0);

 delay(250.0e-6);

 if(N_flg[A] == 'y')

 delay(2.0*pwn);

 if(D_flg[A] == 'y')

 delay(PRG_STOP_DELAY + POWER_DELAY + 4.0e-6 + pwd1);

 simpulse(pw,pwc,zero,t3,0.0,0.0);

 decphase(zero);

 delay(2.0e-6);

 rgradient('z',gzlvl4);

 delay(gt4);

 rgradient('z',0.0);

 delay(250.0e-6);

 delay(taua

 - gt4 - 252.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 txphase(one);

 delay(2.0e-6);

 rgradient('z',gzlvl4);

 delay(gt4);

 rgradient('z',0.0);

 delay(250.0e-6);

 delay(taua

 - gt4 - 252.0e-6);

 simpulse(pw,pwc,one,zero,0.0,0.0);

 txphase(zero);

 delay(2.0e-6);

 rgradient('z',gzlvl5);

 delay(gt5);

 rgradient('z',0.0);

 delay(250.0e-6);

 delay(taua

 - gt5 - 252.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 txphase(one); decphase(one);

 delay(2.0e-6);

 rgradient('z',gzlvl5);

 delay(gt5);

 rgradient('z',0.0);

 delay(250.0e-6);

 delay(taua

 - gt5 - 252.0e-6);

 simpulse(pw,pwc,one,one,0.0,0.0);

 txphase(zero);

 if(D_flg[A] == 'y')

 lk_sample();

 obsoffset(tof_me);

 delay(gt6 + 252.0e-6 + 2.0*GRADIENT_DELAY - 0.5*(pwc - pw) - 2.0/PI*pw);

 rgpulse(2.0*pw,zero,0.0,0.0);

 rlpower(dpwr,DODEV); /* Set power for decoupling */

 rlpower(dpwr2,DO2DEV); /* Set power for decoupling */

 delay(2.0e-6);

 rgradient('z',gzlvl6);

 delay(gt6);

 rgradient('z',0.0);

 delay(250.0e-6 - 2.0*POWER_DELAY);

 obsoffset(tof);

/* BEGIN ACQUISITION */

status(D);

setreceiver(t4);

}

/* END hsqc_c13_trosy_lek_800.c */
 ADDIN EN.CITE

(Ollerenshaw et al., 2005; Tugarinov et al., 2003)

/* BEGIN H_C_correlation_CHD2_methyl_lek.c */
/* H_C_correlation_CHD2_methyl_lek.c

 This pulse sequence will allow one to perform the following

 experiment:

 2D correlations of 1H and 13C

 A series of experiments can be selection,

 exp_flg[A] == 'a', hsqc, no sensitivity enhancement

 exp_flg[A] == 'b', hsqc, sensitivity enhancement

 Use grad_sort

 exp_flg[A] == 'c', hmqc, sensitivity enhancement

 Use grad_sort

 exp_flg[A] == 'd', hmqc, no sensitivity enhancement, but with

 both 1H and 13C polarization contributions

 Set cpol_flg='y','n'; separate and add/subtract

 the resulting data sets. Then

 use phases

 of(a,b) and (a+90,b+90) for the two data sets so

 that they have the same phase properties.

 The sum data set will have the polarization starting

 on 1H and the difference data set has the polarization

 starting on 13C. Measure the signal intensities in each

 data set and the noise floor in each. The sum of the

 data sets will have intensity of A+B, where A and B

 are the individual

 intensities and noise of sq(C^2+D^2), where C and D

 are the noise floors in each. CHECK

 Check to see if this is better than exp 'c' above

 or better than regular hmqc

 exp_flg[A] == 'e', hzqc, sensitivity enhancement, and with

 both 1H and 13C polarization contributions

 Use grad_sort

 exp_flg[A] == 'f', hzqc with polarization starting on 13C and 1H sat

 Uses three channels:

 1) 1H - carrier

 2) 13C - carrier

 3) 15N - carrier

 Set dm = 'nnny', dmm = 'cccp' [13C decoupling during acquisition].

 Must set phase = 1,2 for States-TPPI

 acquisition in t1 [13C].

 The flag f1180 should be set to 'y' if t1 is

 to be started at halfdwell time. This will give -90, 180

 phasing in f1. If it is set to 'n' the phasing will

 be 0,0 and will still give a perfect baseline.

 Modified by L.E.Kay on May 27, 2004 to enable 2H dcpl

*/

#include <standard.h>

static int phi1_a[2] = {0,2},

 rec_a[2] = {0,2},

 phi1_b[2] = {0,2},

 phi2_b[4] = {0,0,1,1},

 phi3_b[4] = {1,1,0,0},

 rec_b1[4] = {0,2,1,3},

 rec_b2[4] = {0,2,3,1},

 phi1_c[2] = {0,2},

 phi2_c[4] = {0,0,1,1},

 phi3_c[4] = {1,1,0,0},

 rec_c1[4] = {0,2,1,3},

 rec_c2[4] = {0,2,3,1},

 phi1_d[2] = {0,2},

 phi2_d[2] = {0,2},

 phi3_d[1] = {0},

 rec_d[2] = {0,2},

 phi1_e1[4] = {3,2,1,0},

 phi1_e2[4] = {1,0,3,2},

 phi2_e[2] = {0,1},

 phi3_e[4] = {1,2,3,0},

 rec_e1[4] = {0,2,2,0},

 rec_e2[4] = {0,0,2,2},

 phi1_f[4] = {0,1,2,3},

 phi2_f[2] = {3,2},

 rec_f[4] = {0,0,2,2};

static double d2_init=0.0;

pulsesequence()

{

/* DECLARE VARIABLES */

 char fsat[MAXSTR],

 fscuba[MAXSTR],

 f1180[MAXSTR], /* Flag to start t1 @ halfdwell */

 mess_flg[MAXSTR], /* 1H magnetization purging followed

 by relaxation delay */

 shp_sl[MAXSTR],

 water_flg[MAXSTR],

 D_flg[MAXSTR],

 cpol_flg[MAXSTR],

 exp_flg[MAXSTR];

 int phase,

 t1_counter; /* used for states tppi in t1 */

 double tau1, /* t1 delay */

 taua, /* ~ 1/4JCH = 1.7 ms */

 dly_pg1, /* delay for water purging */

 pwc, /* 90 c pulse at dhpwr */

 pwn, /* 90 N at dhpwr2 */

 tsatpwr, /* low level 1H trans.power for presat */

 tpwrmess, /* power level for water purging */

 dhpwr, /* power level for high power 13C pulses on dec1 */

 dhpwr2, /* power level for high power 15NC pulses on dec2 */

 sw1, /* sweep width in f1 */

 tof_me,

 tpwrsl,

 pw_sl,

 pwd1,

 pwd,

 dpwr_D,

 ncyc,

 tpwrnoe,

 pw_noe,

 gt0,

 gt1,

 gt2,

 gt3,

 gt4,

 gzlvl0,

 gzlvl1,

 gzlvl2,

 gzlvl3,

 gzlvl4;

/* LOAD VARIABLES */

 getstr("fsat",fsat);

 getstr("f1180",f1180);

 getstr("fscuba",fscuba);

 getstr("mess_flg",mess_flg);

 getstr("shp_sl",shp_sl);

 getstr("water_flg",water_flg);

 getstr("D_flg",D_flg);

 getstr("cpol_flg",cpol_flg);

 getstr("exp_flg",exp_flg);

 taua = getval("taua");

 pwc = getval("pwc");

 pwn = getval("pwn");

 dly_pg1 = getval("dly_pg1");

 tpwr = getval("tpwr");

 tsatpwr = getval("tsatpwr");

 tpwrmess = getval("tpwrmess");

 dhpwr = getval("dhpwr");

 dhpwr2 = getval("dhpwr2");

 dpwr = getval("dpwr");

 phase = (int) (getval("phase") + 0.5);

 sw1 = getval("sw1");

 tof_me = getval("tof_me");

 tpwrsl = getval("tpwrsl");

 pw_sl = getval("pw_sl");

 pwd1 = getval("pwd1");

 pwd = getval("pwd");

 dpwr_D = getval("dpwr_D");

 ncyc = getval("ncyc");

 tpwrnoe = getval("tpwrnoe");

 pw_noe = getval("pw_noe");

 gt0 = getval("gt0");

 gt1 = getval("gt1");

 gt2 = getval("gt2");

 gt3 = getval("gt3");

 gt4 = getval("gt4");

 gzlvl0 = getval("gzlvl0");

 gzlvl1 = getval("gzlvl1");

 gzlvl2 = getval("gzlvl2");

 gzlvl3 = getval("gzlvl3");

 gzlvl4 = getval("gzlvl4");

/* CHECK VALIDITY OF PARAMETER RANGES */

 if(exp_flg[A] != 'f' && d1 < 1) {

 printf("incorrect use of d1. Make it longer\n");

 abort(1);

 }

 if(exp_flg[A] == 'f' && ncyc < 200) {

 printf("make ncyc longer \n");

 abort(1);

 }

 if((dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y'))

 {

 printf("incorrect dec1 decoupler flags! ");

 abort(1);

 }

 if((dm2[A] == 'y' || dm2[B] == 'y' || dm2[C] == 'y' || dm2[D] == 'y'))

 {

 printf("incorrect dec2 decoupler flags! ");

 abort(1);

 }

 if(tsatpwr > 6)

 {

 printf("TSATPWR too large !!! ");

 abort(1);

 }

 if(dpwr > 48)

 {

 printf("don't fry the probe, DPWR too large! ");

 abort(1);

 }

 if(dpwr2 > -16)

 {

 printf("don't fry the probe, DPWR2 too large! ");

 abort(1);

 }

 if(pw > 200.0e-6)

 {

 printf("dont fry the probe, pw too high ! ");

 abort(1);

 }

 if(tpwrsl > 30) {

 printf("tpwrsl < 31\n");

 abort(1);

 }

 if(gt0 > 5e-3 || gt1 > 5e-3 || gt2 > 5e-3 || gt3 > 5e-3 ||

 gt4 > 5e-3)

 {

 printf("gradients on for too long. Must be < 5e-3 \n");

 abort(1);

 }

 if(dpwr3 > 51) {

 printf("dpwr3 is too high; < 52\n");

 abort(1);

 }

 if(dpwr_D > 42) {

 printf("dpwr_D is too high; < 43\n");

 abort(1);

 }

 if((ni-1)/sw1 > 0.15 && D_flg[A] == 'y') {

 printf("F1 acq is too long\n");

 abort(1);

 }

/* Set up f1180 tau1 = t1 */

 tau1 = d2;

 if(f1180[A] == 'y') {

 tau1 += (1.0 / (2.0*sw1));

 }

/* Calculate modifications to phases for States-TPPI acquisition */

 if(ix == 1) d2_init = d2 ;

 t1_counter = (int) ((d2-d2_init)*sw1 + 0.5);

 if(t1_counter % 2) {

 }

/* BEGIN ACTUAL PULSE SEQUENCE */

status(A);

 offset(dof,DODEV);

 obsoffset(tof);

 rlpower(tsatpwr,TODEV); /* Set transmitter power for 1H presaturation */

 rlpower(dhpwr,DODEV); /* Set Dec1 power to dhpwr */

 rlpower(dhpwr2,DO2DEV); /* Set Dec2 power for hard 15N pulses */

/* Presaturation Period */

status(B);

 if(mess_flg[A] == 'y') {

 rlpower(tpwrmess,TODEV);

 txphase(zero);

 rgpulse(dly_pg1,zero,2.0e-6,0.0);

 rgpulse(dly_pg1/1.62,one,2.0e-6,0.0);

 rlpower(tsatpwr,TODEV);

 }

 if (fsat[0] == 'y')

 {

 delay(2.0e-5);

 rgpulse(d1,zero,2.0e-6,0.0);

 rlpower(tpwr,TODEV); /* Set transmitter power for hard 1H pulses */

 delay(2.0e-5);

 if(fscuba[0] == 'y')

 {

 delay(2.2e-2);

 rgpulse(pw,zero,2.0e-6,0.0);

 rgpulse(2*pw,one,2.0e-6,0.0);

 rgpulse(pw,zero,2.0e-6,0.0);

 delay(2.2e-2);

 }

 }

 else

 {

 delay(d1);

 }

 rlpower(tpwr,TODEV); /* Set transmitter power for hard 1H pulses */

 txphase(zero);

 dec2phase(zero);

 decphase(zero);

 delay(1.0e-5);

/* Begin Pulses */

status(C);

 if(exp_flg[A] != 'f') {

 rcvroff();

 lk_hold();

}

 delay(20.0e-6);

if(exp_flg[A] == 'a') {

 tau1 = tau1 - 4.0/PI*pwc - 4.0*pw - 4.0e-6;

 tau1 = tau1/2.0;

 if(tau1 < 0.2e-6)

 {

 printf("t1/2 %e -> 0.2e-6",tau1);

 tau1 = 0.2e-6;

 }

/* LOAD PHASE TABLE */

 settable(t1,2,phi1_a);

 settable(t2,2,rec_a);

 if(phase==2)

 tsadd(t1,1,4);

/* first ensure that magnetization does infact start on H and not C */

 if(water_flg[A] == 'y') {

 obspower(tpwrsl);

 shaped_pulse(shp_sl,pw_sl,zero,4.0e-6,4.0e-6);

 obspower(tpwr);

 }

 decrgpulse(pwc,zero,0.0,0.0);

 obsoffset(tof_me);

 delay(2.0e-6);

 rgradient('z',gzlvl0);

 delay(gt0);

 rgradient('z',0.0);

 delay(250.0e-6);

 rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(2.0e-6);

 delay(taua - gt1 - 4.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 txphase(one);

 decphase(t1);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(2.0e-6);

 delay(taua

 - gt1 - 4.0e-6);

 rgpulse(pw,one,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl2);

 delay(gt2);

 rgradient('z',0.0);

 delay(200.0e-6);

 if(D_flg[A] == 'y') {

 /* Turn on decoupling */

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3power(dpwr_D);

 dec3unblank();

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* Turn on decoupling */

 }

 decrgpulse(pwc,t1,0.0,0.0);

 decphase(zero);

 delay(tau1);

 rgpulse(pw,one,0.0,0.0);

 rgpulse(2.0*pw,zero,2.0e-6,0.0);

 rgpulse(pw,one,2.0e-6,0.0);

 delay(tau1);

 decrgpulse(pwc,zero,0.0,0.0);

 if(D_flg[A] == 'y') {

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 }

 delay(2.0e-6);

 rgradient('z',gzlvl3);

 delay(gt3);

 rgradient('z',0.0);

 delay(250.0e-6);

 rgpulse(pw,zero,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl4);

 delay(gt4);

 rgradient('z',0.0);

 delay(202.0e-6);

 lk_sample();

 delay(taua - gt4 - 204.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl4);

 delay(gt4);

 rgradient('z',0.0);

 delay(202.0e-6);

 delay(taua

 - gt4 - 204.0e-6 - 2.0*POWER_DELAY);

} /* end of exp_flg == a */

/* next experiment is the enhanced hsqc */

if(exp_flg[A] == 'b') {

 tau1 = tau1 - 4.0/PI*pwc - 4.0*pw - 4.0e-6;

 tau1 = tau1/2.0;

 if(tau1 < 0.2e-6)

 {

 printf("t1/2 %e -> 0.2e-6",tau1);

 tau1 = 0.2e-6;

 }

/* LOAD PHASE TABLE */

 settable(t1,2,phi1_b);

 settable(t2,4,phi2_b);

 settable(t3,4,phi3_b);

 settable(t4,4,rec_b1);

 settable(t5,4,rec_b2);

 if(phase==2)

 tsadd(t2,2,4);

/* first ensure that magnetization does infact start on H and not C */

 if(water_flg[A] == 'y') {

 obspower(tpwrsl);

 shaped_pulse(shp_sl,pw_sl,zero,4.0e-6,4.0e-6);

 obspower(tpwr);

 }

 decrgpulse(pwc,zero,0.0,0.0);

 obsoffset(tof_me);

 delay(2.0e-6);

 rgradient('z',gzlvl0);

 delay(gt0);

 rgradient('z',0.0);

 delay(250.0e-6);

 rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(2.0e-6);

 delay(taua - gt1 - 4.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 txphase(one);

 decphase(t1);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(2.0e-6);

 delay(taua

 - gt1 - 4.0e-6);

 rgpulse(pw,one,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl2);

 delay(gt2);

 rgradient('z',0.0);

 delay(200.0e-6);

 if(D_flg[A] == 'y') {

 /* Turn on decoupling */

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3power(dpwr_D);

 dec3unblank();

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* Turn on decoupling */

 }

 decrgpulse(pwc,t1,0.0,0.0);

 decphase(t2);

 delay(tau1);

 rgpulse(pw,one,0.0,0.0);

 rgpulse(2.0*pw,zero,2.0e-6,0.0);

 rgpulse(pw,one,2.0e-6,0.0); txphase(zero);

 delay(tau1);

 simpulse(pw,pwc,zero,t2,0.0,0.0);

 txphase(zero); decphase(zero);

 if(D_flg[A] == 'y') {

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 }

 delay(2.0e-6);

 rgradient('z',gzlvl3);

 delay(gt3);

 rgradient('z',0.0);

 delay(202.0e-6);

 lk_sample();

 if(D_flg[A] == 'y')

 delay(taua - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1

 - gt3 - 204.0e-6);

 else

 delay(taua

 - gt3 - 204.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 txphase(one); decphase(t3);

 delay(2.0e-6);

 rgradient('z',gzlvl3);

 delay(gt3);

 rgradient('z',0.0);

 delay(202.0e-6);

 delay(taua

 - gt3 - 204.0e-6);

 simpulse(pw,pwc,one,t3,0.0,0.0);

 txphase(zero); decphase(zero);

 delay(2.0e-6);

 rgradient('z',gzlvl4);

 delay(gt4);

 rgradient('z',0.0);

 delay(202.0e-6);

 delay(taua - gt4 - 204.0e-6 - 0.5*(pwc-pw));

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl4);

 delay(gt4);

 rgradient('z',0.0);

 delay(202.0e-6);

 delay(taua

 - gt4 - 204.0e-6);

 rgpulse(pw,zero,0.0,0.0);

} /* end of exp_flg == b */

/* now hmqc with enhancement */

if(exp_flg[A] == 'c') {

 tau1 = tau1 - 4.0/PI*pwc - 4.0*pw - 4.0e-6;

 tau1 = tau1/2.0;

 if(tau1 < 0.2e-6)

 {

 printf("t1/2 %e -> 0.2e-6",tau1);

 tau1 = 0.2e-6;

 }

/* LOAD PHASE TABLE */

 settable(t1,2,phi1_c);

 settable(t2,4,phi2_c);

 settable(t3,4,phi3_c);

 settable(t4,4,rec_c1);

 settable(t5,4,rec_c2);

 if(phase==2)

 tsadd(t2,2,4);

/* first ensure that magnetization does infact start on H and not C */

 if(water_flg[A] == 'y') {

 obspower(tpwrsl);

 shaped_pulse(shp_sl,pw_sl,zero,4.0e-6,4.0e-6);

 obspower(tpwr);

 }

 decrgpulse(pwc,zero,0.0,0.0);

 obsoffset(tof_me);

 delay(2.0e-6);

 rgradient('z',gzlvl0);

 delay(gt0);

 rgradient('z',0.0);

 delay(250.0e-6);

 rgpulse(pw,zero,0.0,0.0); /* 90 deg 1H pulse */

 decphase(t1);

 if(D_flg[A] == 'n') {

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(250.0e-6);

 delay(taua - gt1 - 252.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(250.0e-6);

 delay(taua - gt1 - 252.0e-6);

 }

 if(D_flg[A] == 'y') {

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(250.0e-6);

 delay(taua - gt1 - 252.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(250.0e-6);

 delay(taua - gt1 - 252.0e-6

 - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY

 - PRG_START_DELAY);

 /* Turn on decoupling */

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3power(dpwr_D);

 dec3unblank();

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* Turn on decoupling */

 }

 txphase(one);

 decrgpulse(pwc,t1,0.0,0.0);

 decphase(t2);

 delay(tau1);

 rgpulse(pw,one,0.0,0.0);

 rgpulse(2.0*pw,zero,2.0e-6,0.0);

 rgpulse(pw,one,2.0e-6,0.0); txphase(zero);

 delay(tau1);

 decrgpulse(pwc,t2,0.0,0.0);

 if(D_flg[A] == 'n') {

 delay(2.0e-6);

 rgradient('z',gzlvl3);

 delay(gt3);

 rgradient('z',0.0);

 delay(250.0e-6);

 delay(taua - gt3 - 252.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl3);

 delay(gt3);

 rgradient('z',0.0);

 delay(250.0e-6);

 delay(taua - gt3 - 252.0e-6);

 }

 if(D_flg[A] == 'y') {

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 delay(taua - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1

 - gt3 - 252.0e-6);

 delay(2.0e-6);

 rgradient('z',gzlvl3);

 delay(gt3);

 rgradient('z',0.0);

 delay(250.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl3);

 delay(gt3);

 rgradient('z',0.0);

 delay(250.0e-6);

 /* Turn on decoupling */

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3power(dpwr_D);

 dec3unblank();

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* Turn on decoupling */

 delay(taua - gt3 - 252.0e-6

 - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY - PRG_START_DELAY

 - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1);

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 }

 txphase(zero); decphase(t3);

 lk_sample();

 simpulse(pw,pwc,zero,t3,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl2);

 delay(gt2);

 rgradient('z',0.0);

 delay(202.0e-6);

 delay(taua - gt2 - 204.0e-6

 - 0.5*(pwc-pw));

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 txphase(one);

 delay(2.0e-6);

 rgradient('z',gzlvl2);

 delay(gt2);

 rgradient('z',0.0);

 delay(202.0e-6);

 delay(taua

 - gt2 - 204.0e-6);

 rgpulse(pw,one,0.0,0.0);

} /* end of exp_flg == c */

/* Now HMQC with polarization starting from both 13C and 1H */

if(exp_flg[A] == 'd') {

 if(ix==1)

 printf("Make sure that cpol_flg is arrayed y, n\n");

 tau1 = tau1 - 4.0/PI*pwc - 4.0*pw - 4.0e-6;

 tau1 = tau1/2.0;

 if(tau1 < 0.2e-6)

 {

 printf("t1/2 %e -> 0.2e-6",tau1);

 tau1 = 0.2e-6;

 }

/* LOAD PHASE TABLE */

 settable(t1,2,phi1_d);

 settable(t2,2,phi2_d);

 settable(t3,1,phi3_d);

 settable(t4,2,rec_d);

 if(phase==2)

 tsadd(t3,1,4);

 if(cpol_flg[A] == 'n')

 tsadd(t1,2,4);

 if(water_flg[A] == 'y') {

 obspower(tpwrsl);

 shaped_pulse(shp_sl,pw_sl,zero,4.0e-6,4.0e-6);

 obspower(tpwr);

 }

 obsoffset(tof_me);

 delay(2.0e-6);

 rgradient('z',gzlvl0);

 delay(gt0);

 rgradient('z',0.0);

 delay(250.0e-6);

 decrgpulse(pwc,t1,4.0e-6,0.0);

 if(D_flg[A] == 'y') {

 /* Turn on decoupling */

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3power(dpwr_D);

 dec3unblank();

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* Turn on decoupling */

 delay(2.0*taua - (2.0/PI)*pwc

 - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY

 - PRG_START_DELAY

 - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1

 - gt1 - 152.0e-6);

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 }

 if(D_flg[A] == 'n')

 delay(2.0*taua - (2.0/PI)*pwc - gt1 - 152.0e-6);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(150.0e-6);

 simpulse(pw,2.0*pwc,zero,zero,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(150.0e-6);

 if(D_flg[A] == 'y') {

 /* Turn on decoupling */

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3power(dpwr_D);

 dec3unblank();

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* Turn on decoupling */

 delay(2.0*taua

 - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY

 - PRG_START_DELAY

 - gt1 - 152.0e-6);

 }

 else

 delay(2.0*taua - gt1 - 152.0e-6);

 decrgpulse(pwc,t2,0.0,0.0);

 decphase(t3);

 delay(tau1);

 rgpulse(pw,one,0.0,0.0);

 rgpulse(2.0*pw,zero,2.0e-6,0.0);

 rgpulse(pw,one,2.0e-6,0.0); txphase(zero);

 delay(tau1);

 decrgpulse(pwc,t3,0.0,0.0);

 if(D_flg[A] == 'n') {

 delay(2.0*taua + 0.5*(2.0*pwc-pw) - gt1 - 202.0e-6);

 lk_sample();

 }

 if(D_flg[A] == 'y') {

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 lk_sample();

 delay(2.0*taua + 0.5*(2.0*pwc-pw) - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1

 - gt1 - 202.0e-6);

 }

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(200.0e-6);

} /* end of exp_flg == d */

/* Now zq methyl trosy with polarization starting from 1H and 13C */

if(exp_flg[A] == 'e') {

 tau1 = tau1 - 4.0/PI*pwc;

 tau1 = tau1/2.0;

 if(tau1 < 0.2e-6)

 {

 printf("t1/2 %e -> 0.2e-6",tau1);

 tau1 = 0.2e-6;

 }

/* LOAD PHASE TABLE */

 settable(t1,4,phi1_e1);

 settable(t11,4,phi1_e2);

 settable(t2,2,phi2_e);

 settable(t3,4,phi3_e);

 settable(t4,4,rec_e1);

 settable(t5,4,rec_e2);

 if(water_flg[A] == 'y') {

 obspower(tpwrsl);

 shaped_pulse(shp_sl,pw_sl,zero,4.0e-6,4.0e-6);

 obspower(tpwr);

 }

 obsoffset(tof_me);

 delay(2.0e-6);

 rgradient('z',gzlvl0);

 delay(gt0);

 rgradient('z',0.0);

 delay(250.0e-6);

 if(phase==1)

 decrgpulse(pwc,t1,4.0e-6,0.0);

 else

 decrgpulse(pwc,t11,4.0e-6,0.0);

 txphase(t2); decphase(zero);

 if(D_flg[A] == 'y') {

 /* Turn on decoupling */

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3power(dpwr_D);

 dec3unblank();

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* Turn on decoupling */

 delay(2.0*taua - (2.0/PI)*pwc

 - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY

 - PRG_START_DELAY

 - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1

 - gt1 - 152.0e-6);

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 }

 if(D_flg[A] == 'n')

 delay(2.0*taua - (2.0/PI)*pwc - gt1 - 152.0e-6);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(150.0e-6);

 simpulse(pw,2.0*pwc,t2,zero,0.0,0.0);

 txphase(zero); decphase(t3);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(150.0e-6);

 if(D_flg[A] == 'y') {

 /* Turn on decoupling */

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3power(dpwr_D);

 dec3unblank();

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* Turn on decoupling */

 delay(2.0*taua

 - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY

 - PRG_START_DELAY

 - gt1 - 152.0e-6);

 }

 else

 delay(2.0*taua - gt1 - 152.0e-6);

 if(phase==1)

 simpulse(2.0*pw,pwc,zero,t3,0.0,0.0);

 else

 decrgpulse(pwc,t3,0.0,0.0);

 decphase(zero);

 delay(tau1);

 delay(tau1);

 if(phase==1)

 decrgpulse(pwc,zero,0.0,0.0);

 else

 simpulse(2.0*pw,pwc,zero,zero,0.0,0.0);

 if(D_flg[A] == 'n' && phase==1) {

 lk_sample();

 delay(2.0*taua - pwc + (2.0/PI)*pw - gt1 - 202.0e-6);

 }

 if(D_flg[A] == 'n' && phase==2) {

 lk_sample();

 delay(2.0*taua + pwc + (2.0/PI)*pw - gt1 - 202.0e-6);

 }

 if(D_flg[A] == 'y' && phase==1) {

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 lk_sample();

 delay(2.0*taua - pwc + (2.0/PI)*pw - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1

 - gt1 - 202.0e-6);

 }

 if(D_flg[A] == 'y' && phase==2) {

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 lk_sample();

 delay(2.0*taua + pwc + (2.0/PI)*pw - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1

 - gt1 - 202.0e-6);

 }

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(200.0e-6);

} /* end of exp_flg == e */

if(exp_flg[A] == 'f') {

 tau1 = tau1/2.0;

 if(tau1 < 0.2e-6)

 {

 printf("t1/2 %e -> 0.2e-6",tau1);

 tau1 = 0.2e-6;

 }

/* LOAD PHASE TABLE */

 settable(t1,4,phi1_f);

 settable(t2,2,phi2_f);

 settable(t3,4,rec_f);

 if(ncyc > 400) {

 printf("ncyc is too long\n");

 abort(1);

 }

 if(tpwrnoe > 57) {

 printf("tpwrnoe is too high\n");

 abort(1);

 }

 initval(ncyc,v4);

 if(ncyc > 0) {

 obspower(tpwrnoe);

 loop(v4,v5);

 delay(2.5e-3 - 1.33*pw_noe/2.0);

 rgpulse(1.33*pw_noe,zero,0.0,0.0);

 delay(2.5e-3 - 1.33*pw_noe/2.0);

 endloop(v5);

 obspower(tpwr);

 }

 obsoffset(tof_me);

 delay(2.0e-6);

 rgradient('z',gzlvl0);

 delay(gt0);

 rgradient('z',0.0);

 delay(250.0e-6);

 rcvroff();

 lk_hold();

 decrgpulse(pwc,t1,4.0e-6,0.0);

 txphase(zero); decphase(zero);

 if(D_flg[A] == 'y') {

 /* Turn on decoupling */

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3power(dpwr_D);

 dec3unblank();

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* Turn on decoupling */

 delay(taua

 - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY

 - PRG_START_DELAY

 - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1

 - gt1 - 152.0e-6);

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 }

 if(D_flg[A] == 'n')

 delay(taua - gt1 - 152.0e-6);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(150.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 txphase(t2);

 delay(2.0e-6);

 rgradient('z',gzlvl1);

 delay(gt1);

 rgradient('z',0.0);

 delay(150.0e-6);

 if(D_flg[A] == 'y') {

 /* Turn on decoupling */

 dec3power(dpwr3);

 dec3rgpulse(pwd1,one,4.0e-6,0.0);

 dec3phase(zero);

 dec3power(dpwr_D);

 dec3unblank();

 dec3prgon(dseq3,pwd,dres3);

 dec3on();

 /* Turn on decoupling */

 delay(taua

 - POWER_DELAY - 4.0e-6 - pwd1 - POWER_DELAY

 - PRG_START_DELAY

 - gt1 - 152.0e-6 - pw);

 }

 else

 delay(taua - gt1 - 152.0e-6 - pw);

 rgpulse(pw,t2,0.0,0.0);

 txphase(zero);

 delay(tau1);

 delay(tau1);

 if(phase==1)

 decrgpulse(pwc,zero,0.0,0.0);

 else

 simpulse(2.0*pw,pwc,zero,zero,0.0,0.0);

 if(D_flg[A] == 'n') {

 lk_sample();

 delay(taua - gt2 - 202.0e-6);

 }

 if(D_flg[A] == 'y') {

 /* Turn of 2H decoupling */

 dec3off();

 dec3prgoff();

 dec3blank();

 dec3power(dpwr3);

 dec3rgpulse(pwd1,three,4.0e-6,0.0);

 /* Turn of 2H decoupling */

 lk_sample();

 delay(taua - PRG_STOP_DELAY - POWER_DELAY - 4.0e-6 - pwd1

 - gt2 - 202.0e-6);

 }

 delay(2.0e-6);

 rgradient('z',gzlvl2);

 delay(gt2);

 rgradient('z',0.0);

 delay(200.0e-6);

 simpulse(2.0*pw,2.0*pwc,zero,zero,0.0,0.0);

 delay(2.0e-6);

 rgradient('z',gzlvl2);

 delay(gt2);

 rgradient('z',0.0);

 delay(200.0e-6);

 delay(taua

 - gt2 - 202.0e-6);

} /* end of exp_flg == f */

 rlpower(dpwr,DODEV); /* Set power for decoupling */

 rlpower(dpwr2,DO2DEV); /* Set power for decoupling */

/* BEGIN ACQUISITION */

status(D);

 if(exp_flg[A] == 'a')

 setreceiver(t2);

 if(exp_flg[A] == 'b' && phase==1)

 setreceiver(t4);

 if(exp_flg[A] == 'b' && phase==2)

 setreceiver(t5);

 if(exp_flg[A] == 'c' && phase==1)

 setreceiver(t4);

 if(exp_flg[A] == 'c' && phase==2)

 setreceiver(t5);

 if(exp_flg[A] == 'd')

 setreceiver(t4);

 if(exp_flg[A] == 'e' && phase==1)

 setreceiver(t4);

 if(exp_flg[A] == 'e' && phase==2)

 setreceiver(t5);

 if(exp_flg[A] == 'f')

 setreceiver(t3);

}
/* END H_C_correlation_CHD2_methyl_lek.c */
References

Nietlispach, D. (2005) Suppression of anti-TROSY lines in a sensitivity enhanced gradient selection TROSY scheme. J. Biomol. NMR 31, 161-166.

Ollerenshaw, J. E., Tugarinov, V., Skrynnikov, N. R., & Kay, L. E. (2005) Comparison of 13CH3, 13CH2D, and 13CHD2 methyl labeling strategies in proteins. J Biomol NMR 33, 25-41.

Pervushin, K., Riek, R., Wider, G., & Wüthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366-12371.

Tugarinov, V., Hwang, P., Ollerenshaw, J., & Kay, L. E. (2003) Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J. Am. Chem. Soc. 125, 10420-10428.

