

ASSIGNMENTS, STRUCTURE AND DYNAMICS OF
STAPHYLOCOCCAL NUCLEASE

D.A. Torchia, S.W. Sparks, H.B.R. Cole and D.M. Baldwin
Bone Research Branch, NIDR
L.E. Kay, D. Marion and A. Bax
Laboratory of Chemical Physics, NIDDK
National Institutes of Health
Bethesda, MD, 20892

Introduction

Proteins are complex natural polymers that are composed of twenty different amino acid monomer units. In their native states nearly all proteins adopt well-defined but irregular three-dimensional structures. A typical globular protein is composed of alpha-helices, beta-strands and various types of turns arranged to form a complex but compact structure. The intimate relationship between protein function and structure has been recognized for many years, and is the reason that protein structure and dynamics have been intensively studied. Such studies have received recent impetus because of advances in molecular biology which permit proteins to be produced in high yield with an almost limitless variety of variations in the amino acid sequence.

For nearly forty years three-dimensional structures of crystalline globular proteins have been determined by X-ray diffraction. More recently two-dimensional NMR techniques have been developed that yield structures of proteins in solution. Because resolution and sensitivity of the NMR experiment decrease as molecular weight increases, structural determination using NMR is limited to unlabeled proteins having molecular weights of less than ca. 10kD. However, this limit increases significantly if amino acids that are labeled with deuterium, ¹³C and/or ¹⁵N are incorporated into the protein. We have, for example,⁴ obtained nearly complete proton resonance assignments of the protein staphylococcal nuclease complexed with thymidine 3',5'-diphosphate and Ca²⁺, Mr ca. 18kD, from two- and three-dimensional NMR spectra of the labeled protein. These assignments together with measurements of NOE's, coupling constants, relaxation rates and amide proton-deuterium exchange provide a significant body of information about the structure and dynamics of the protein.

Experimental

Staphylococcal nuclease was obtained from transformed *E. coli* grown on defined media as described previously⁴. NMR spectra were obtained using high resolution NT500, AM500 and AM600 spectrometers and a homebuilt solid state 6T instrument equipped with a Doty Scientific CPMAS probe.

Results

A ribbon diagram of the nuclease backbone structure⁵, derived from the X-ray coordinates, is shown in Figure 1. The sequence of amino acids that are identified in the crystal structure is listed in Figure 2. We have assigned the backbone nitrogen and proton signals of the amino acid residues that are underlined in the figure. With the exception of protons beyond the beta-carbons in the Lys, Arg and Glx residues nearly all non-exchangeable sidechain protons of the underlined residues have also been assigned.

As noted above, isotope enrichment played an essential role in our assignment strategy, particularly ¹⁵N labeling. The heteronuclear multiple quantum shift correlation, HMQC, spectrum of the fully ¹⁵N labeled protein, Figure 3, provides the chemical shifts of nearly every backbone amide nitrogen and proton in the protein. These signals are assigned to specific types of amino acids by labeling the protein with one type of ¹⁵N enriched amino acid. The inset in Figure 3 shows the HMQC spectrum of nuclease labeled with ¹⁵N Phe, which immediately identifies the three Phe signals in the fully labeled spectrum. In addition, simultaneous labeling with ^{[1-13]C}Thr yields the assignment of Phe34, because the Phe34 ¹⁵N signal is split by the carbonyl carbon of Thr33. A variety of HMQC and isotope edited two-dimensional NMR experiments together with NOESY and HOHAHA spectra of natural abundance samples provided sequential assignments⁴ of the underlined residues.

A NOESY-HMQC three-dimensional spectrum of the fully ¹⁵N labeled protein confirmed the assignments obtained from the various two-dimensional spectra, and, in addition, as a consequence of the superior resolution and sensitivity of the 3-D spectrum, also provided assignments for E122, Q123, E142 and D143. The 2-D NOESY connectivities involving these

residues were weak, absent or ambiguous, and therefore they could not be confidently assigned without the information contained in the 3-D spectrum, Figure 4.

The Pro residues present a challenging assignment problem because they lack amide protons. The nuclease Pro assignments were made using ¹³C edited NOESY spectra of samples labeled with [2-¹³C]Pro and [4-¹³C]Pro.

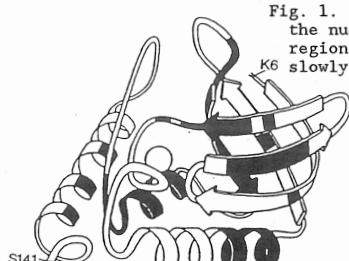
The protein backbone assignments together with the NOESY data provide information about the protein structure in solution. Three observed⁶ sets of long sequences of dNN connectivities involving residues 58-69, 101-109 and 124-137 are strong evidence for alpha helical structures in these regions of the amino acid sequence. In addition sequences of strong dαN connectivities involving residues 7-18, 22-29, 31-39, 71-79, 86-96 and 109-115, together with numerous long range dαα and dNN connectivities between these residues are strong evidence of antiparallel beta-sheet structure. These secondary structural features found in solution are also observed in the crystal structure. Another feature of the crystal structure, namely, an uncommon *cis* peptide bond between K116 and P117, also occurs in the solution, as shown by the strong NOESY connectivity between the alpha protons of K116 and P117.

Additional evidence that most of the protein backbone has nearly the same structure in solution and in the solid state comes from comparisons of ¹³C and ¹⁵N chemical shifts measured⁷ in the crystalline state with measurements made in solution. Figure 5 compares the chemical shifts of ^{[15N]Val} labeled nuclease in the crystalline and solution states. With the exception of V51, there is excellent agreement between the ¹⁵N chemical shifts in the two states. The difficulty in identifying V51 in the solid state spectrum is not too surprising because the X-ray temperature factors are much larger than average, in the neighborhood of residue 50, indicating a disordered structure in this region of the protein sequence. This region of the protein is evidently more disordered and flexible in solution than in the crystal because relatively few of the NOE connectivities predicted by the crystal structure for residues 43-57 have been observed⁴.

Quite similar solution and crystal backbone structures are also found¹⁰ by comparing measured NH- α H J couplings with J couplings⁸ derived from the Karplus equation and the crystallographic⁹ phi angles. Overall the RMS difference in the NMR and crystallographic J values for nuclease is nearly as good as found¹¹ for the BPTI protein that was used for parameterization of the Karplus equation. One interesting result is that the major contributions to the RMS difference originate from K70, K78, Y85, E135 and S141. The first three residues are involved in intermolecular contacts in the nuclease crystal, K78 is in a sharp turn immediately adjacent to the major interprotein contact domain in the crystal, and S141 is the last residue observed in the nuclease crystal structure¹⁰. A second interesting result is that energy minimization of the crystal structure followed by a 100ps molecular dynamics simulation of the fully hydrated energy minimized protein crystal structure significantly decreased agreement between NMR and X-ray calculated J values. Evidently 100 ps of dynamics is insufficient to move the structure out of the local energy minimum that resulted from straightforward energy minimization of the good crystal structure.

In addition to structural information, NMR measurements provide useful information about nuclease molecular dynamics. Measurements of T1, T2 and NOE have been made for ca. 100 of the assigned backbone amide nitrogens¹² in nuclease. Using the model independent approach we find an overall correlation time of 9.1 ns for nuclease and order parameters in the range 0.78 to 0.92 for the backbone nitrogens. The large order parameters show that residues in the non-terminal portions of the protein exhibit only small amplitude backbone motions on the picosecond timescale. However, linewidth measurements show that residues E52 and K53, located in the disordered loop region discussed above, also undergo significant additional motions on the ms timescale.

While relaxation measurements provide information about motions on the millisecond to picosecond timescales, amide hydrogen-deuterium exchange experiments provide information about motions on a much slower time scale. For instance, twenty four hours after dissolving nuclease in deuterium oxide, about⁴ forty five amide protons remained unexchanged with solvent⁴. The locations of these slowly exchanging


amides are indicated by the shaded regions in Figure 1. As expected, all slowly exchanging amide protons are observed to form hydrogen bonds in the crystal structure; however not all hydrogen-bonded amide protons exchange slowly, i.e. about one-half of the hydrogen bonded protons have exchange lifetimes less than ca. 8hr. For instance only three amide protons in the helix spanning residues 124-137 exchange slowly, and only amides in the C-terminal half of helix 58-69 exchange slowly. After maintaining the sample at 8°C for ca. 8 months, it was found that helix 99-109 and the beta-strand 86-96 were the regions having the greatest stabilities against hydrogen exchange. This beta-strand also contains Y91, the only tyrosine in nuclese whose ring flips slowly in solution. In addition the Y91 hydroxyl proton is not exchange broadened in water. This result enabled us to identify NOE connectivities between this proton and its adjacent ring protons as well as amide protons of T120 and H121. The Tyr91-OH is the only nuclese hydroxyl proton that we have observed.

In addition to studying the structure and dynamics of wild type nuclese, we are, in collaboration with Professor John Gerlt, comparing the spectra of wild type nuclese with that of the mutant E43D. The latter has ca. 0.1% the activity of the wild type enzyme. The wild type and mutant protein spectra show many small differences in chemical shifts; however their NOESY spectra are qualitatively the same. A careful comparison of the NOESY spectra is currently underway to determine if structural differences between the wild type and mutant proteins can be identified.

References

1. Protein Engineering (D. L. Oxender and C. F. Fox, eds.) 365pp, A. R. Liss, Inc., New York.
2. Ernst, R. R., Bodenhausen, G. and Woka, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Clarendon: Oxford, 1987.
3. Wuehrich, K., NMR of Proteins and Nucleic Acids; Wiley: New York, 1986.
4. Torchia, D. A., Sparks, S. W. and Bax, A., (1989) Biochemistry, **28**, 5509-5524.
5. Richardson, J. S. (1981) Adv. Protein Chem. **34**, 167-339.
6. Marion, D., Kay, L. W., Sparks, S. W., Torchia, D. A. and Bax, A. (1989) J. Am. Chem. Soc., **111**, 1515-1517.
7. Torchia, D. A., Sparks, S. W., Young, P. W. and Bax, A. (1989) J. Am. Chem. Soc., in press.
8. Loll, P. J. and Lattman, E. E. (1989) Proteins: Structure, Function, Genetics, in press.
9. Cole, H. B. R., Sparks, S. W. and Torchia, D. A. (1988) Proc. Natl. Acad. Sci. USA, **85**, 6362-6365.
10. Kay, L. E., Brooks, B., Sparks, S. W., Torchia, D. A. and Bax, A. (1989) J. Am. Chem. Soc., **111**, 5488-5490.
11. Pardi, A., Billeter, M. and Wuehrich, (1984) J. Mol. Biol., **180**, 741-751.
12. Kay, L. E., Torchia, D. A. and Bax, A. (1989) Biochemistry, in press.
13. Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc. **104** 4546-4559.

Fig. 1. Ribbon representation of the nuclese backbone; shaded regions show locations of the K6 slowly exchanging amide protons.

6 11 21 31 41 51 61
KLHKEPATLIAKIDGDTVKL MYKGQPMTFRLLIVDTPETTKHPKK GVEKYCPPEASAF TKKM**VENAK**
 71 81 91 101 111 121 131 141
KIEVEFDKG QRTDKYGRGLAYIYADGK MVNNEALV ROGLAKVAYVYKPNNTTHEOHLRK SEAOKKEK INITUS

Fig. 2. Sequence of amino acids identified in the crystal structure of nuclese. Backbone proton and/or nitrogen signals of underlined residues are assigned.

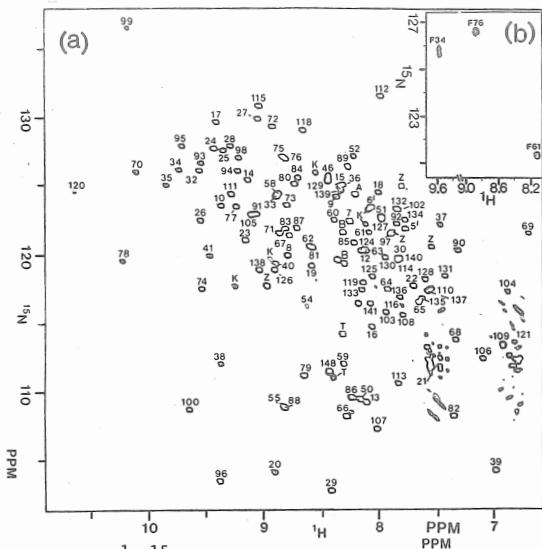


Fig. 3. ^1H - ^{15}N HMQC spectra of (a) fully ^{15}N labeled nuclese; (b) $[^{15}\text{N}]$ Phe labeled nuclese.

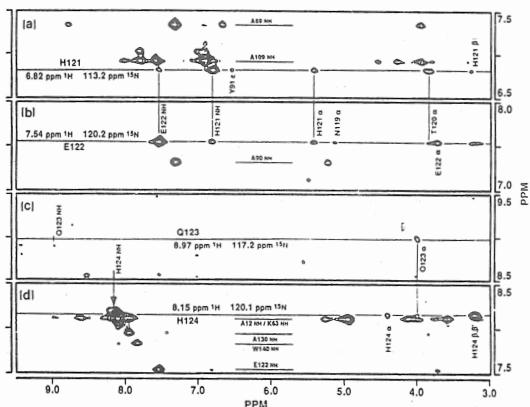


Fig. 4. A portion of the 3-D spectrum of fully ^{15}N labeled nuclese showing dNN connectivities of H121-E122 the $\text{d}_{\text{NO}}^{(1,1)}$ connectivity of Q123 that were obscured by other connectivities in the 2-D spectra.

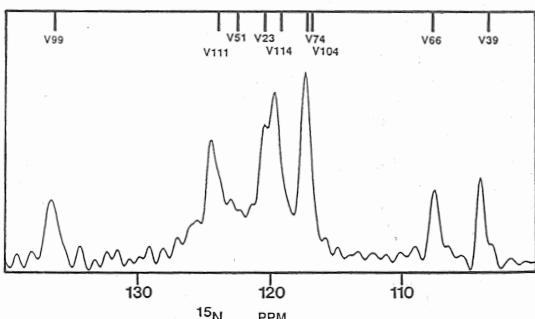


Fig. 5. Comparison of solution chemical shifts, indicated by the short vertical bars, with the CPMAS spectrum of crystalline nuclese labeled with $[^{15}\text{N}]$ Val. The broad spectral component centered at 118 ppm is primarily due to amorphous material.

16 Polymer Preprints

Volume 31

Number 1

April 1990

Published by The Division of Polymer Chemistry, Inc.

American Chemical Society

EDITOR

Bill M. Culbertson
The Ohio State University
College of Dentistry
305 W. 12th Ave
Columbus, OH 43210-1241
(614) 292-0777
FAX: 614-292-7619

ASSISTANT EDITORS

Dana Garcia
Atochem North America
620 Old York Road
P.O. Box 1295
Summerville, NJ 08876-1295
(201) 704-2141

ASSOCIATE EDITOR

Judith S. Riffle
Virginia Polytechnic Institute
and State University
Department of Chemistry
Blacksburg, VA 24061
(703) 231-8214
FAX: 703-231-8517

Harry W. Gibson
Virginia Polytechnic Institute
and State University
Department of Chemistry
Blacksburg, VA 24061
(703) 231-5902
FAX: 703-231-8517

Robson F. Storey
The University of Southern
Mississippi
Southern Station, Box 10076
Hattiesburg, MS 39406-00076
(601) 266-5829
FAX: 601-266-5829

Papers presented at the Boston, MA Meeting
