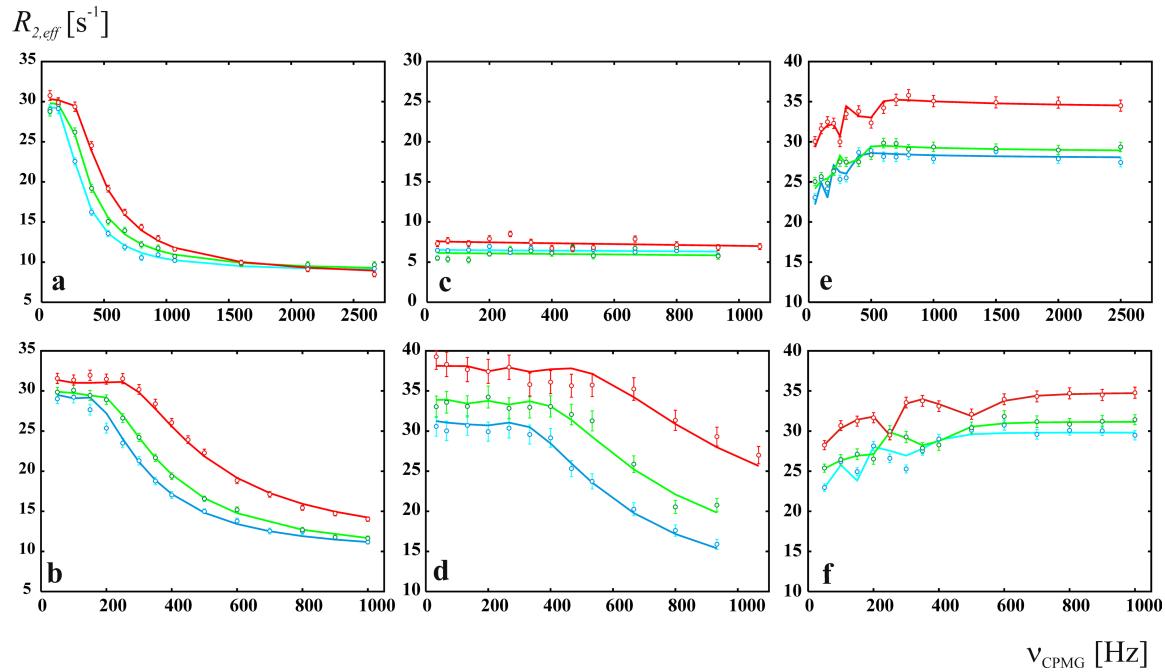


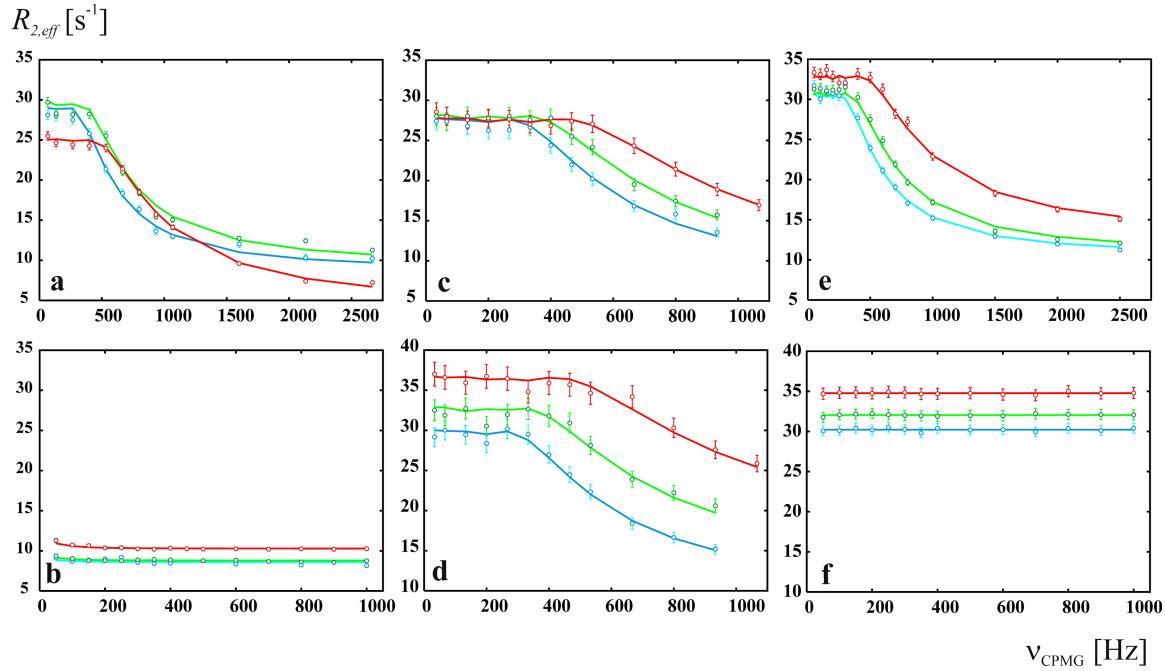
Supporting Information.

Below are three figures (as described in the legend to Figure 1) showing the six dispersion profiles for Glu11, Lys22 and Val 58.

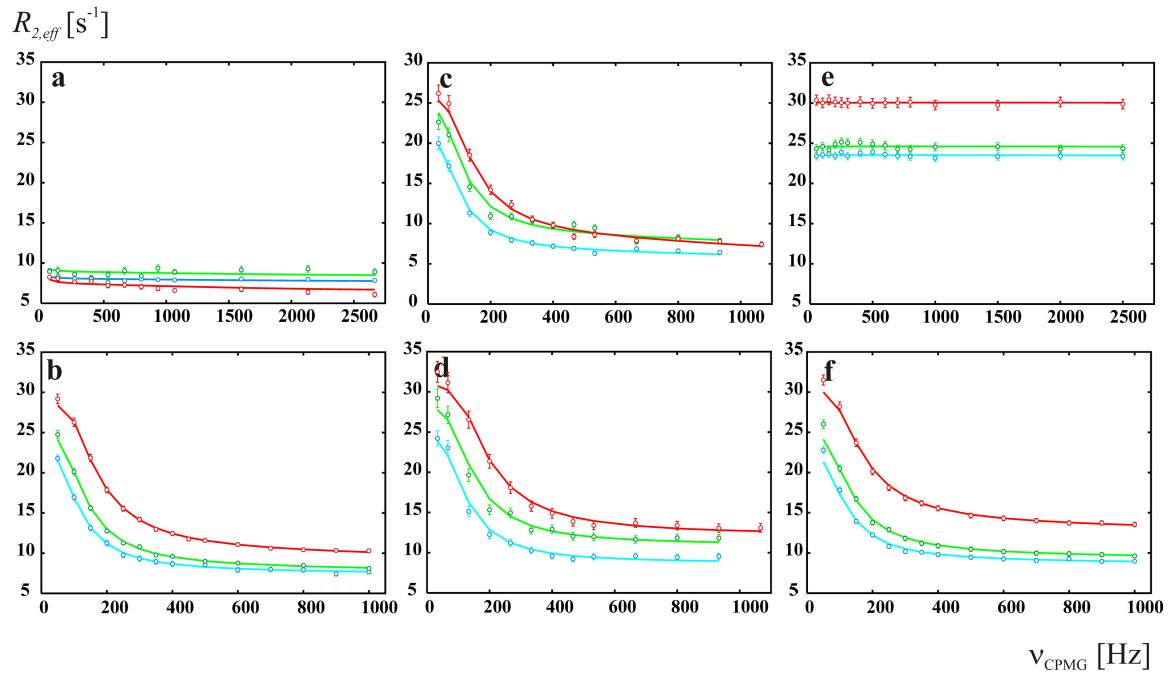
E 11



K 22



V 58



Theoretical Framework for 2- and 3-site chemical exchange.

Below we present the equations necessary to calculate dispersion profiles generated from the 6 experiments described in the text. Although much of the material can be found in several previous papers by our laboratory in connection with 2-site chemical exchange¹⁻³, what follows below is a consolidation of this work as well as a generalization to the case of 3-site exchange.

Theoretical $R_{2,eff}$ rates for ¹H SQ, ¹⁵N SQ, ¹H-¹⁵N DQ, ¹H-¹⁵N ZQ, ¹H MQ and ¹⁵N MQ experiments in the case of (i) 2-site exchange between folded state F and low populated unfolded state U ($F \leftrightarrow U$) and (ii) 3-site exchange between states F , I (intermediate) and U ($F \leftrightarrow I \leftrightarrow U$) are calculated as:

$$R_{2,eff} = -\frac{1}{T} \ln \frac{M_F(T)}{M_F(0)} \quad (S1)$$

where $M_F(0)$ is the initial magnetization of state F and $M_F(T)$ is magnetization of state F after relaxation period T . In the case of 2-site exchange $M_F(t)$ is a component of the vector $\mathbf{M}(t) = (M_F(t), M_U(t))^T$, while for a 3-site process $M_F(t)$ is an element of $\mathbf{M}(t) = (M_F(t), M_I(t), M_U(t))^T$. Magnetization M_{\pm} ($M = M_+ + M_-$) that evolves during the period T is of the form H_{\pm} in ¹H SQ, N_{\pm} in ¹⁵N SQ, $H_{\pm}N_{\pm}$ in ¹H-¹⁵N DQ, $H_{\mp}N_{\pm}$ in ¹H-¹⁵N ZQ and $H_+N_+ + H_-N_- + H_-N_+ + H_+N_-$ in ¹H MQ and ¹⁵N MQ experiments.

The evolution of magnetization in any of the ¹H SQ, ¹⁵N SQ, ¹H-¹⁵N DQ and ¹H-¹⁵N ZQ dispersion experiments is described by a similar set of equations, S2-S4. The application of a $(\delta-180^\circ-\delta)_{2n}$ sequence of length $T = 4n\delta$, comprised of ¹H 180° refocusing pulses (¹H SQ), ¹⁵N 180° pulses (¹⁵N SQ) or simultaneous ¹H and ¹⁵N 180° pulses (¹H-¹⁵N DQ, ¹H-¹⁵N ZQ experiments), produces $\mathbf{M}(T)$ given by:

$$\mathbf{M}_{\pm}(T) = (\mathbf{A}_{\pm} \mathbf{A}_{\mp} \mathbf{A}_{\mp} \mathbf{A}_{\pm})^n \mathbf{M}_{\pm}(0), \quad (S2)$$

where $\mathbf{M}(0)$ is proportional to $(p_F, p_U)^T$ or $(p_F, p_I, p_U)^T$ in the case of 2- or 3-site exchange, respectively, and p_F , p_I and p_U are populations of states F , I and U . In the case of 2-site exchange the evolution matrix \mathbf{A} is given by:

$$\mathbf{A}_\pm = \exp\left(\begin{bmatrix} -R_{2F} - k_{FU} & k_{UF} \\ k_{FU} & -R_{2U} - k_{UF} \pm i\Delta\omega_{FU} \end{bmatrix} \cdot \delta\right), \quad (S3)$$

where $i = \sqrt{-1}$, $\Delta\omega_{kl}$ is the frequency difference between states k and l (radians/s) given by $\Delta\omega_{kl} = \Delta\omega_{H,kl} = \omega_H \Delta\bar{\omega}_{H,kl}$ (^1H SQ), $\Delta\omega_{kl} = \Delta\omega_{N,kl} = \omega_N \Delta\bar{\omega}_{N,kl}$ (^{15}N SQ), $\Delta\omega_{kl} = \Delta\omega_{H,kl} + \Delta\omega_{N,kl} = \omega_H \Delta\bar{\omega}_{H,kl} + \omega_N \Delta\bar{\omega}_{N,kl}$ (^1H - ^{15}N DQ) or $\Delta\omega_{kl} = \Delta\omega_{H,kl} - \Delta\omega_{N,kl} = \omega_H \Delta\bar{\omega}_{H,kl} - \omega_N \Delta\bar{\omega}_{N,kl}$ (^1H - ^{15}N ZQ experiments), $\Delta\bar{\omega}_{H,kl}$ and $\Delta\bar{\omega}_{N,kl}$ are ^1H and ^{15}N chemical shift differences (ppm) between states k and l , ω_H and ω_N are Larmour frequencies of ^1H and ^{15}N nuclei ($\omega = -\gamma B_0$), k_{kl} is the rate constant for the transition from state k to l , and $R_{2,k}$ is the (effective) intrinsic transverse relaxation rate in state k for the coherence of interest (here we assume that $R_{2,k}$ are the same for all exchanging states). In the case of 3-site exchange the evolution matrix \mathbf{A} is given by:

$$\mathbf{A}_\pm = \exp\left(\begin{bmatrix} -R_{2F} - k_{FI} & k_{IF} & 0 \\ k_{FI} & -R_{2I} - k_{IF} - k_{IU} \pm i\Delta\omega_{FI} & k_{UI} \\ 0 & k_{IU} & -R_{2U} - k_{UI} \pm i\Delta\omega_{FU} \end{bmatrix} \cdot \delta\right). \quad (S4)$$

Note that direct transitions between states F and U are not allowed in the present model of 3-site exchange ($F \leftrightarrow I \leftrightarrow U$) (i.e., $k_{FU} = k_{UF} = 0$). For minimization purposes we recast evolution matrices \mathbf{A} in terms of the exchange rate constants $k_{ex,kl} = k_{kl} + k_{lk}$ and populations of the exchanging states p_k ($\sum_k p_k = 1$), related to the rate constants k_{kl}

through the conditions of microscopic reversibility (i.e., detailed balance) $p_k k_{kl} = p_l k_{lk}$.

The theoretical description of ^1H and ^{15}N MQ experiments is slightly different from that of the corresponding ^1H SQ, ^{15}N SQ, ^1H - ^{15}N DQ and ^1H - ^{15}N ZQ schemes. Here the magnetization of interest at the beginning of the relaxation period T is given by a 1:1 combination of double- and zero-quantum components: $\mathbf{M}_+(0) + \mathbf{M}_-(0) = \mathbf{DQ}_+(0) + \mathbf{ZQ}_+(0) + \mathbf{DQ}_-(0) + \mathbf{ZQ}_-(0)$, where $\mathbf{DQ}_\pm(0)$ and $\mathbf{ZQ}_\pm(0)$ correspond to $H_\pm N_\pm$ and $H_m N_\pm$ operators, respectively ($\mathbf{M}(0)$ is proportional to $(p_F, p_U)^T$ and $(p_F, p_I, p_U)^T$ for 2- and 3-site exchange, as before). Let us focus on the ^{15}N MQ experiment, recognizing that the equations pertaining to the ^1H MQ sequence can be simply obtained by switching the indices H and N). Application of the sequence, $(\delta-180_N-\delta)_n - 180_H - (\delta-180_N-\delta)_n$, with length $T = 4n\delta$, produces $\mathbf{M}(T) = (\mathbf{DQ}(T) + \mathbf{ZQ}(T))/2$ where:

$$\mathbf{D}\mathbf{Q}_\pm(T) = \mathbf{A}_\pm \mathbf{B}_\pm \mathbf{Z}\mathbf{Q}_\pm(0), \quad (\text{S5})$$

$$\mathbf{Z}\mathbf{Q}_\pm(T) = \mathbf{B}_\pm \mathbf{A}_\pm \mathbf{D}\mathbf{Q}_\pm(0),$$

$\mathbf{A}_\pm = (\mathbf{D}_\pm \mathbf{Z}_\pm \mathbf{Z}_\mp \mathbf{D}_\pm)^{n/2}$ and $\mathbf{B}_\pm = (\mathbf{Z}_\pm \mathbf{D}_\mp \mathbf{D}_\pm \mathbf{Z}_\pm)^{n/2}$. In the case of 2-site exchange, the matrices for \mathbf{D}_\pm and \mathbf{Z}_\pm are given by:

$$\mathbf{D}_\pm = \exp\left(\begin{bmatrix} -R_{2F} - k_{FU} & k_{UF} \\ k_{FU} & \pm i\Delta\omega_{H,FU} \pm i\Delta\omega_{N,FU} - R_{2U} - k_{UF} \end{bmatrix} \cdot \delta\right) \quad (\text{S6})$$

$$\mathbf{Z}_\pm = \exp\left(\begin{bmatrix} -R_{2F} - k_{FU} & k_{UF} \\ k_{FU} & \mp i\Delta\omega_{H,FU} \pm i\Delta\omega_{N,FU} - R_{2U} - k_{UF} \end{bmatrix} \cdot \delta\right).$$

While for 3-site exchange they become:

$$\mathbf{D}_\pm = \exp\left(\begin{bmatrix} -R_{2F} - k_{FI} & k_{IF} & 0 \\ k_{FI} & \pm i\Delta\omega_{H,FI} \pm i\Delta\omega_{N,FI} - R_{2I} - k_{IF} - k_{IU} & k_{UI} \\ 0 & k_{IU} & \pm i\Delta\omega_{H,FU} \pm i\Delta\omega_{N,FU} - R_{2U} - k_{UI} \end{bmatrix} \cdot \delta\right) \quad (\text{S7})$$

$$\mathbf{Z}_\pm = \exp\left(\begin{bmatrix} -R_{2F} - k_{FI} & k_{IF} & 0 \\ k_{FI} & \mp i\Delta\omega_{H,FI} \pm i\Delta\omega_{N,FI} - R_{2I} - k_{IF} - k_{IU} & k_{UI} \\ 0 & k_{IU} & \mp i\Delta\omega_{H,FU} \pm i\Delta\omega_{N,FU} - R_{2U} - k_{UI} \end{bmatrix} \cdot \delta\right)$$

Equations S1-S7 allow the calculation of the theoretical $R_{2,eff}$ values for the 6 dispersion experiments presented in the paper as a function of the pulse repetition frequency in CPMG-type refocusing sequences, $v_{\text{CPMG}} = 1/(4\delta)$, and the parameters of the 2- and 3-site exchange models.

References

- (1) Korzhnev, D. M.; Kloiber, K.; Kay, L. E. *J Am Chem Soc* **2004**, *126*, 7320-7329.
- (2) Korzhnev, D. M.; Kloiber, K.; Kanelis, V.; Tugarinov, V.; Kay, L. E. *J Am Chem Soc* **2004**, *126*, 3964-3973.
- (3) Korzhnev, D. M.; Salvatella, X.; Vendruscolo, M.; Di Nardo, A. A.; Davidson, A. R.; Dobson, C. M.; Kay, L. E. *Nature* **2004**, *430*, 586-590.