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Supporting Information.  
 
Below are three figures (as described in the legend to Figure 1) showing the six 
dispersion profiles for Glu11, Lys22 and Val 58. 
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Theoretical Framework for 2- and 3-site chemical exchange. 

 

Below we present the equations necessary to calculate dispersion profiles generated from 

the 6 experiments described in the text. Although much of the material can be found in 

several previous papers by our laboratory in connection with 2-site chemical exchange1-3, 

what follows below is a consolidation of this work as well as a generalization to the case 

of 3-site exchange.  

 

Theoretical R2,eff rates for 1H SQ, 15N SQ, 1H-15N DQ, 1H-15N ZQ, 1H MQ and 15N 

MQ experiments in the case of (i) 2-site exchange between folded state F and low 

populated unfolded state U (F↔U) and (ii) 3-site exchange between states F, I 

(intermediate) and U (F↔I↔U) are calculated as:  
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where MF(0) is the initial magnetization of state F and MF(T) is magnetization of state F 

after relaxation period T. In the case of 2-site exchange MF(t) is a component of the 

vector M(t) = (MF(t), MU(t))T, while for a 3-site process MF(t) is an element of M(t) = 

(MF(t), MI(t), MU(t))T. Magnetization M± (M = M++M-) that evolves during the period T is 

of the form H± in 1H SQ, N± in 15N SQ, H±N± in 1H-15N DQ, ±NH m  in 1H-15N ZQ and 

−++−−−++ +++ NHNHNHNH  in 1H MQ and 15N MQ experiments.  

The evolution of magnetization in any of the 1H SQ, 15N SQ, 1H-15N DQ and 1H-
15N ZQ dispersion experiments is described by a similar set of equations, S2-S4. The 

application of a (δ-180o-δ)2n sequence of length T = 4nδ, comprised of 1H 180o 

refocusing pulses (1H SQ), 15N 180o pulses (15N SQ) or simultaneous 1H and 15N 180o 

pulses (1H-15N DQ, 1H-15N ZQ experiments), produces M(T) given by:  
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where M(0) is proportional to (pF, pU)T or (pF, pI, pU)T in the case of 2- or  3-site 

exchange, respectively, and pF, pI and pU are populations of states F, I and U. In the case 

of 2-site exchange the evolution matrix A is given by:  
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where 1−=i , ∆ωkl is the frequency difference between states k and l (radians/s) given 

by ∆ωkl = ∆ωΗ,kl = ωH∆ϖΗ,kl (1H SQ), ∆ωkl = ∆ωΝ,,kl = ωN∆ϖΝ,kl (15N SQ), ∆ωkl = 

∆ωΗ,kl+∆ωΝ,kl = ωH∆ϖΗ,kl+ωN∆ϖΝ,kl (1H-15N DQ) or ∆ωkl = ∆ωΗ,kl-∆ωΝ,kl = ωH∆ϖΗ,kl-

ωN∆ϖΝ,kl (1H-15N ZQ experiments), ∆ϖΗ,kl and ∆ϖΝ,kl are 1H and 15N chemical shift 

differences (ppm) between states k and l, ωH and ωN are Larmour frequencies of 1H and 
15N nuclei (ω=-γBo), kkl is the rate constant for the transition from state k to l, and R2,k is 

the (effective) intrinsic transverse relaxation rate in state k for the coherence of interest 

(here we assume that R2,k are the same for all exchanging states). In the case of 3-site 

exchange the evolution matrix A is given by:  
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Note that direct transitions between states F and U are not allowed in the present model 

of 3-site exchange (F↔I↔U) (i.e., kFU=kUF=0). For minimization purposes we recast 

evolution matrices A in terms of the exchange rate constants kex,kl = kkl+klk and 

populations of the exchanging states pk ( 1=∑
k

kp ), related to the rate constants kkl 

through the conditions of microscopic reversibility (i.e., detailed balance) pkkkl = plklk.  

The theoretical description of 1H and 15N MQ experiments is slightly different 

from that of the corresponding 1H SQ, 15N SQ, 1H-15N DQ and 1H-15N ZQ schemes. Here 

the magnetization of interest at the beginning of the relaxation period T is given by a 1:1 

combination of double- and zero-quantum components: M+(0)+M-(0) = 

DQ+(0)+ZQ+(0)+ DQ-(0)+ZQ-(0), where DQ±(0) and ZQ±(0) correspond to H±N± and 

 H mN ±  operators, respectively (M(0) is proportional to (pF, pU)T and (pF, pI, pU)T for 2- 

and 3-site exchange, as before). Let us focus on the 15N MQ experiment, recognizing that 

the equations pertaining to the 1H MQ sequence can be simply obtained by switching the 

indices H and N). Application of the sequence, (δ-180N-δ)n-180H-(δ-180N-δ)n, with length 

T = 4nδ, produces M(T)= (DQ(T)+ZQ(T))/2 where:  
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)0()( ±±±± = ZQBADQ T ,         (S5)  

)0()( ±±±± = DQABZQ T ,  

2/)( n
±±± = DZZDA mm  and 2/)( n

±±± = ZDDZB mm . In the case of 2-site exchange, the 

matrices for D± and Z± are given by:  
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While for 3-site exchange they become:  
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Equations S1-S7 allow the calculation of the theoretical R2,eff values for the 6 dispersion 

experiments presented in the paper as a function of the pulse repetition frequency in 

CPMG-type refocusing sequences, νCPMG = 1/(4δ), and the parameters of the 2- and 3-site 

exchange models.  
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