Formal Description of Covariance Analysis and Collection of Intermediate Struc-

tural Ensembles

The native-centric topological modeling program outputs a trajectory of particle positions
and energies. Let us represent the residue energy data as a vector function E (t) and define
a basis {€;} (i = {1,..., Nws}) where €; is a unit vector for the energy of residue i and Nyeg
is the number of residues in the simulated protein. In this basis, each component of E(t)

gives the energy of a single residue at simulation sampling period ¢. Call these components

e;(t). Thus,
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where Ngpp is the number of sampling periods. Let us similarly represent the residue
position data as a vector function Q(t). Define a basis {G;} ( ={1,...,3N,s}) consisting
of three Cartesian unit position vectors for each particle, and let ¢;(¢) be the component of

Q(t) along ¢;. Thus,
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Now let us define the covariance matrix C. Element Cj; of C is the covariance of e;(t)

and e;(t):
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It is well known that every symmetric matrix is orthogonally diagonalizable. Therefore
C is always diagonalizable and its eigenvectors are always mutually orthogonal. Let U be
the unitary transformation that diagonalizes C, let A; (i = {1,..., Nyes}) be the eigenvalues

of C , and let v; be corresponding normalized eigenvectors. Then
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The eigenvectors vU; define the system’s principal energy modes. The original residue

energy data can be projected onto these modes by applying the transformation U to E(t):
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Therefore,
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Component &;(t) of UE(t) is the projection of the energy at time ¢ along mode ;.
We now wish to collect structural data from simulation time points ¢ for which the energy

projection ¢;(t) along some selected mode v; is extremal. Define structural ensembles

Siv = {Q)|ea(t) = 72} and Si- = {QM)le(t) < -}

where S;, corresponds to maximal values of €;(¢), S; corresponds to minimal values of £;(t),
and the threshold values 7;1 are chosen such that |S;_| = |[Si+| = 0.01- Ngapmp-

The structures in each ensemble S;. are randomly oriented and must next be aligned
with respect to an external reference structure. Define the reference structure as a vector N

with components {n;} (j = 1,...,3N,) in the same basis as (t):
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Some subset of the system’s particle coordinates j = Jgart,- -, Jend 1S Selected, typically

corresponding to particles in a particular secondary structure element of the simulated pro-
tein. Each structure Q(t) € Six is rotated to obtain a new structure (¢) with a minimal
mean square difference from N in the coordinates J = Jstarts - - - » Jend USing the algorithm of

Kabsch (1). The rotated structures form a new ensemble S, :
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Here, Ré(t),ﬁ is the proper rotation matrix that minimizes G4,
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The ensemble S;, has thousands of members and is difficult to visualize. Let us construct

a reduced ensemble s;;, a representative subset of S}, with only 50 members:
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The elements of s;+ are chosen by a Monte Carlo algorithm to minimize 3:
B =lfi(six) — ASEN* + 15 (six) — F(SiII,
where ji(A) is a vector of average coordinates for some ensemble of structures A:
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and &(A) is a vector of coordinate standard deviations:
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Theoretical Justification of Covariance Analysis

This discussion is based on the work of Garcia (2).

Consider a simulation energy trajectory. The trajectory data can be described as a vector
E (t), where each component of the vector describes the energy of a different particle during
sampling period t (¢t = {1,..., Nsamp}). Each component fluctuates, and the fluctuations of
different components are not independent. Our objective is to find an efficient description
of these correlated fluctuations.

At each time point we can calculate the displacement of E(t) from its mean position. Let
us find the unit vector ¥ that gives the most probable direction of this displacement. To do
this, we will find v such that the mean square projection of the displacement along v is max-
imal. This is equivalent to maximizing the following function f(v) under the normalization

constraint v - v = 1:




It is useful to rearrange our expression for f(v) in the following way:
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where we have introduced the covariance matrix C':
1 Nsamp

v 2 (B0 - (B)) (Bo - ()

samp |

C =

Note that C is a symmetric matrix.
Following the method of Lagrange multipliers, the critical points of f(?v) under the nor-
malization constraint correspond exactly to the critical points of the following Lagrangian

function ¢(v, \):
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We will find the critical points of g(v, A) by finding v such that Vg = 0.
At this point, it is convenient to expand C and 7 in terms of components by using the

following substitutions:
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Note that since C is symmetric, Cj; = Cj;. It is also useful to evaluate the product 6@\,

which appears in ¢(7, A) and will also be useful later.
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Making these substitutions in our expression for g(v, \) gives
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Now let us evaluate Vg. For clarity we will not consider A as a variable when evaluat-
ing the gradient. Note that evaluating dg(v, A)/0A = 0 simply returns the normalization

condition, so we don’t lose any information by evaluating Vg in this way.
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To evaluate the derivative of the sums, let us drop all terms that do not involve vy:
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Using the symmetry relation C;; = C}; to combine summations:
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Now, using Eqs. 2 and 3, we get:
Vg =207 — 2\0
We see that, to satisfy Vg = 0, ¥ must be an eigenvector of C.
Co = \o
It is well known that symmetric matrices such as C are orthogonally diagonalizable.
Therefore, some orthonormal set of eigenvectors {U;} exists with corresponding eigenval-

ues{ Ay} (k=1{1,..., Nes}). Let us index the eigenvectors and eigenvalues in order of de-

creasing magnitude, so that A\ > Xy > ... > Ap,...



The eigenvectors {0y } are the local maxima of f(7) subject to the normalization condition.

The global maximum can be found by substituting each 7y, into f (7).
F(@) = (5@) T = MO0 = M [4]

Therefore, the global maximum is f(7), because \; is the greatest of the eigenvalues.

We see that 7 is the vector which best describes the fluctuations in E (t). The remain-
ing eigenvectors describe directions orthogonal in energy space to v that also maximize
f(@). For example, if the original data E(t) were treated to remove fluctuations along 7y,
eigenvector U, would be the best description of the remaining fluctuations.

Eqgs. 1 and 4 establish that the eigenvalue \; gives the mean square displacement of E(t)
from its mean position along the direction given by 7;. The total mean square displace-
ment is therefore given by SN\, and A;/ S22V \; gives the fraction of the mean square
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displacement accounted for by fluctuations along ;.

Convergence Test for Covariance Analysis Results

Covariance analysis results were tested for convergence by using the following method,
which is based on that of Amadei et al. (3). A series of data sets is prepared by truncation of
the full set, each containing data from nx25, 000 simulation periods where n = 1,2,...,9 and
a covariance analysis is performed on each set. The resulting covariance matrix eigenvectors
are compared by using the formula S(n) = %0 2221 (Vi -@\i,n+1)2, where v;,, is eigenvector
¢ from the dataset with n x 25,000 samples. For each data set, only the 10 eigenvectors
with the largest eigenvalues are considered; the remaining eigenvectors are never interpreted
so their convergence is unimportant. We consider the covariance analysis results to be well
converged if S(n) is stable and close to unity for the four or five largest values of n, which
indicates that the addition of more data would have little effect. All covariance analysis

results presented in this work are well converged.
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