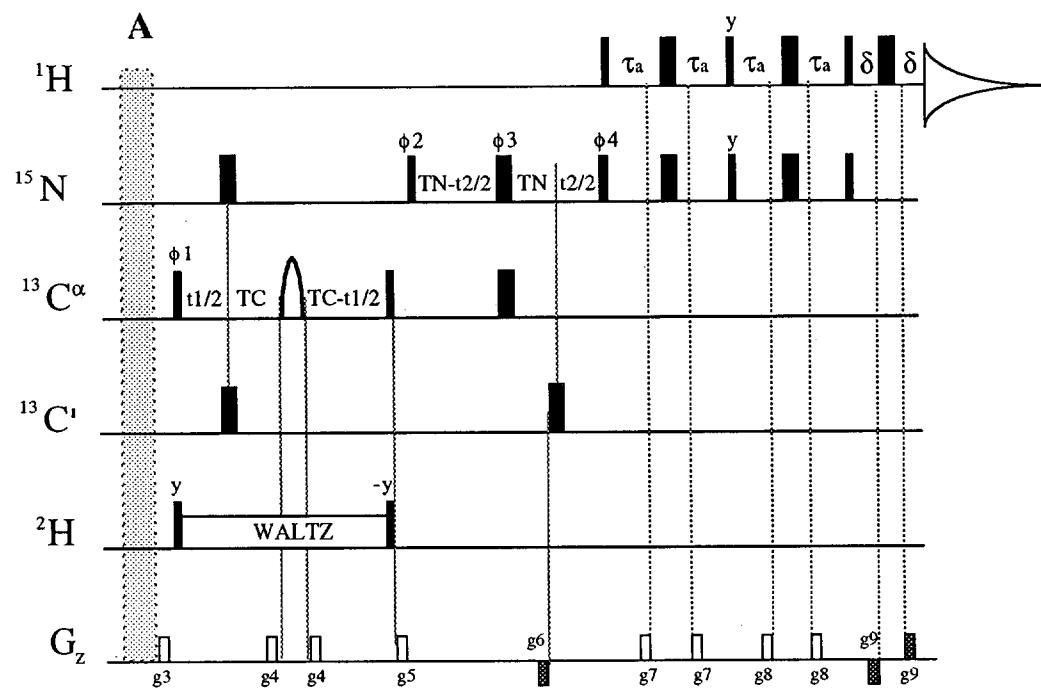
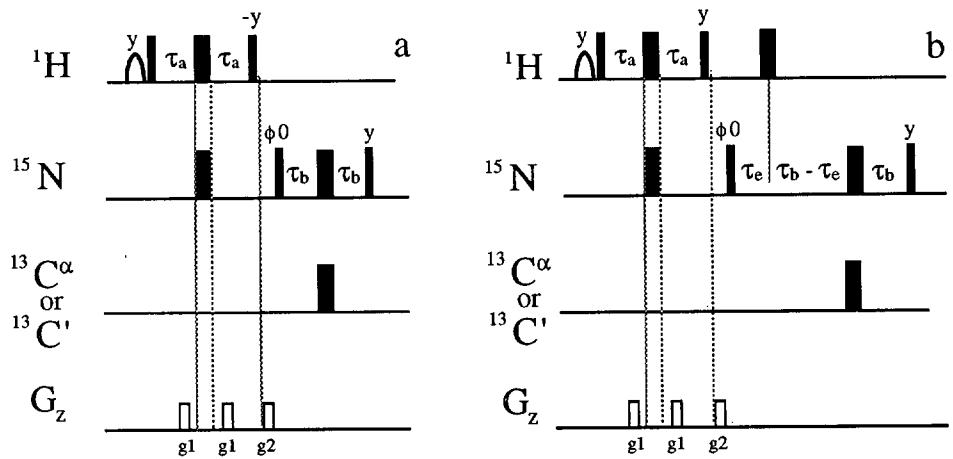
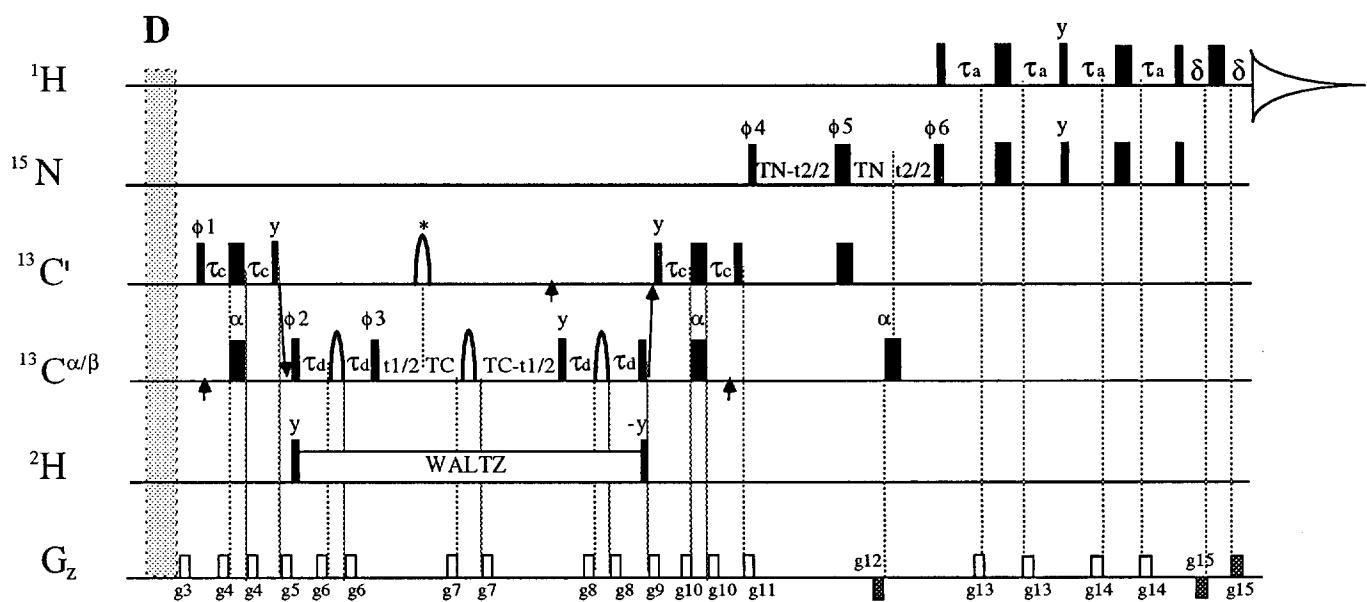
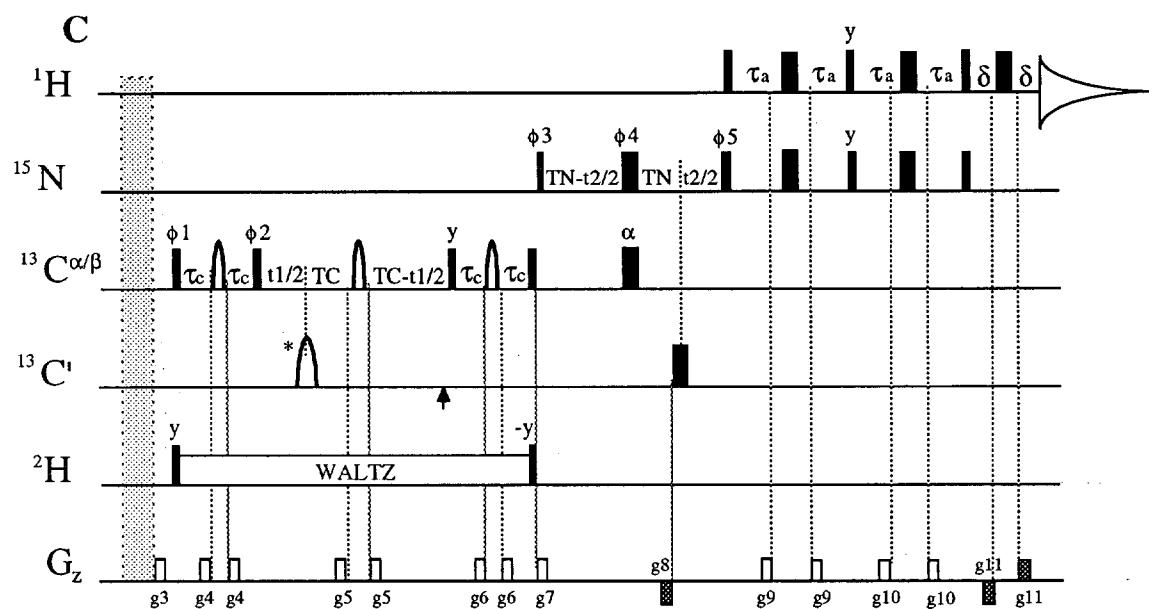
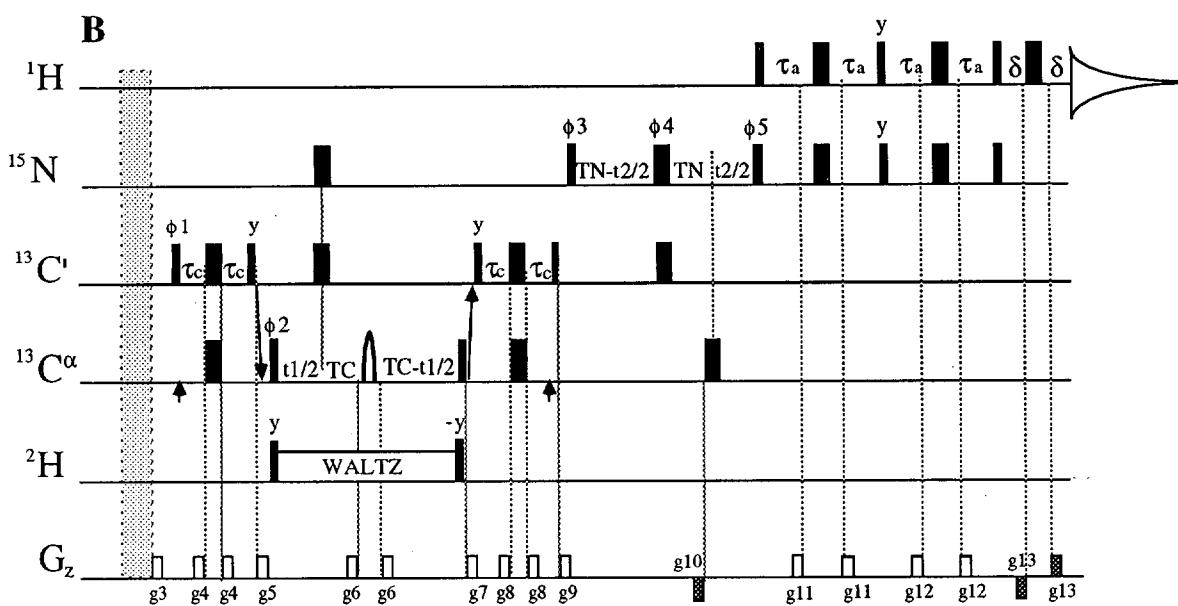


Supporting Information for Yang and Kay, " TROSY Triple Resonance Four Dimensional Spectroscopy of a 46 ns Tumbling Protein"

Figure 1: TROSY-based triple resonance pulse schemes, CT-HNCA, CT-HN(CO)CA, CT-HN(CA)CB, CT-HN(COCA)CB, which make use of the enhanced sensitivity pulsed field gradient implementation for the transfer of magnetization from ^{15}N to HN prior to detection¹. The shaded region of each of sequences A - D can be replaced with either schemes (a) or (b). In scheme (a) $\phi_0 = x$ and suppression of the undesired crosspeak derived from the pathway, $\text{N}_{\text{TR}}(1 + 2\text{HN}_Z) \rightarrow \text{HN}_{\text{TR}}(1 - 2\text{N}_Z)$, is achieved by efficient relaxation occurring during the τ_b and TN delays (totaling ≈ 50 ms) and the broad ^1H linewidth¹. In sequence (b) active suppression of the undesired crosspeak occurs by actively selecting only the slowly relaxing component². The value of τ_e is set to $1/(8J_{\text{NH}})$, while $|\phi_0| = 45^\circ$. The sign of ϕ_0 must be adjusted on each brand of spectrometer to give optimum sensitivity. Note that the phase of the final ^1H 90° of the INEPT³ (y or $-y$) must also be adjusted for optimum signal and can vary between spectrometers. (The phase values listed were calibrated on a Varian spectrometer). The ^1H 180° pulse applied after a delay τ_e from the start of ^{15}N evolution is of the composite variety ($90_x 180_y 90_x$). The shaped ^1H 90° pulse is a water selective pulse having the EBURP-1 profile⁴ (1.05 kHz). Use of scheme (b) does result in a slight attenuation of the signal relative to sequence (a) since for the first τ_e delay the fast relaxing ^{15}N component is the one which ultimately contributes to the signal of interest. Nevertheless a comparison of TROSY based triple resonance experiments recorded with scheme (b) using the enhanced sensitivity pulsed field gradient approach¹ was 3% more sensitive than the implementation of Pervushin et al.⁵ for an MBP sample (600 MHz) at 37°C ($\tau_C = 17$ ns) and at 25°C ($\tau_C = 23$ ns). It is difficult to provide a definitive statement regarding when to use scheme (a) or (b). Figure 1 of Yang and Kay¹ illustrates the relative intensity ratio of the crosspeaks derived from the two pathways [$\text{N}_{\text{TR}}(1 \pm 2\text{HN}_Z) \rightarrow \text{HN}_{\text{TR}}(1 \mp 2\text{N}_Z)$] which can be used as a guideline. For

spectra recorded on MBP at 25 °C ($\tau_C = 23$ ns) using scheme (a) the intensity of the undesired component was no more than 5-6% of the slowly relaxing crosspeak and is predicted to be under 2% for spectra recorded at 800 MHz¹. The undesired crosspeak is below the noise level in spectra recorded on MBP at 5 °C and at 600 MHz. In order to establish whether scheme (a) or (b) should be employed a 2D ¹⁵N-¹HN plane of an HNCO can be recorded to evaluate the size of the undesired crosspeak when sequence a is employed. In what follows only a brief description of the pulse schemes is provided; details can be found in the original references⁶⁻⁸. A. CT-TROSY-HNCA. The ¹³C carrier is centered at 58 ppm and the rectangular ¹³C^α 90° (¹³C^α/¹³C' 180°) pulses are applied with a field strength of $\Delta/\sqrt{15}$ ($\Delta/\sqrt{3}$)⁹, where Δ is defined as in the legend to Figure 1. The shaped non-selective ¹³C^α refocusing pulse has the REBURP⁴ profile and is centered at 45 ppm. The phase cycle used is: $\phi_1 = 2(x), 2(-x)$; $\phi_2 = (y, -y)$; $\phi_3 = 4(x), 4(-x)$; $\phi_4 = x$; $\text{rec} = x, 2(-x), x$. B. CT-TROSY-HN(CO)CA. The ¹³C carrier is initially set to 176 ppm, jumped to 58 ppm prior to the application of the ¹³C^α 90° pulse of phase ϕ_2 and set to 176 ppm after the subsequent ¹³C^α 90° pulse. All ¹³C' and ¹³C^α 90° pulses are applied with a field of $\Delta/\sqrt{15}$; the ¹³C^α and ¹³C' rectangular 180° pulses have a strength of $\Delta/\sqrt{3}$; the ¹³C^α shaped pulse during the CT-¹³C^α evolution period has the REBURP profile⁴ with the center of excitation at 45 ppm. Vertical arrows indicate the position of the Bloch-Siegert compensation pulses¹⁰. Note that the ¹³C^α 180° pulse during the first (second) $2\tau_C$ period is applied after (before) the ¹³C' pulse. The phase cycle is: $\phi_1 = (x, -x)$; $\phi_2 = 2(x), 2(-x)$; $\phi_3 = y$; $\phi_4 = 4(x), 4(-x)$; $\phi_5 = x$; $\text{rec} = x, 2(-x), x$. C. CT-TROSY-HN(CA)CB. The ¹³C carrier is at 43 ppm and the ¹³C^α pulse (of schemes a and b) and the final ¹³C^{α/β} 180° pulse labeled α are applied with the center of excitation at 58 ppm by phase modulation of the carrier^{11,12}. All ¹³C^{α/β} 90° pulses are applied at the highest field possible, while the shaped (non-selective for aliphatic carbons) ¹³C^{α/β} refocusing pulses have the REBURP profile⁴. The phases of these pulses are carefully adjusted for optimum sensitivity. The ¹³C' pulse labeled with * is applied with the G3 profile¹³ (≈ 300 μ s at 600 MHz) centered



at 150 ppm. The phase cycle employed is: $\phi_0 = (x,-x)$ for scheme (a) and either (45°, 225°) or (-45°, 135°) for scheme (b), depending on the brand of spectrometer; $\phi_1 = 2(x), 2(-x)$; $\phi_2 = 4(y), 4(-y)$; $\phi_3 = y$; $\phi_4 = 4(x), 4(-x)$; $\phi_5 = x$; $\text{rec} = x, 2(-x), x$. D. CT-TROSY-HN(COCA)CB. The ^{13}C carrier is initially set to 176 ppm, jumped to 43 ppm prior to the application of the $^{13}\text{C}^{\alpha/\beta}$ 90° pulse of phase ϕ_2 and set back to 176 ppm prior to the $^{13}\text{C}'$ 90_y pulse. All $^{13}\text{C}^{\alpha/\beta}$ 90° pulses are applied with a field of $\Delta'/\sqrt{15}$; $^{13}\text{C}'$ 90° pulses are applied with a field strength of $\Delta/\sqrt{15}$; the $^{13}\text{C}'$ rectangular 180° pulses have a strength of $\Delta/\sqrt{3}$; the $^{13}\text{C}^{\alpha/\beta}$ shaped pulses during the CT- $^{13}\text{C}^{\beta}$ evolution period and the two $2x\tau_d$ periods have REBURP⁴ profiles with the center of excitation at 43 ppm; the ^{13}C pulses labeled α [and the first $^{13}\text{C}^{\alpha}$ pulse of either scheme (a) or (b)] are centered at 58 ppm by phase modulation of the carrier^{11,12} and applied with a field of $\Delta/\sqrt{3}$. The value of Δ' is set to the difference in Hz between the centers of the $^{13}\text{C}'$ (176 ppm) and $^{13}\text{C}^{\alpha/\beta}$ (43 ppm) spectral regions. Vertical arrows indicate the position of the Bloch-Siegert compensation pulses¹⁰. Other pulses are as defined above. The phase cycle is: $\phi_1 = (x,-x)$; $\phi_2 = 2(x), 2(-x)$; $\phi_3 = 4(y), 4(-y)$; $\phi_4 = y$; $\phi_5 = 4(x), 4(-x)$; $\phi_6 = x$; $\text{rec} = x, 2(-x), x$.




It is noteworthy that many of the original schemes used a $^{13}\text{C}'$ 180° pulse having the seduce-1 profile¹⁴ rather than rectangular pulses with nulls at the center of the $^{13}\text{C}^{\alpha}$ region. We have found these different pulses make little difference to the quality of the spectra. Note that on systems where a power change is accompanied by phase changes the phase adjustments needed may vary depending on whether the seduce profile or a rectangular pulse is employed.

References

- (1) Yang, D.; Kay, L. E. *J. Biomol. NMR* **1999**, *13*, 3-9.
- (2) Pervushin, K.; Riek, R.; Wider, G.; Wüthrich, K. *J. Am. Chem. Soc.* **1998**, *120*, 6394-6400.

- (3) Morris, G. A.; Freeman, R. *J. Am. Chem. Soc.* **1979**, *101*, 760-762.
- (4) Geen, H.; Freeman, R. *J. Magn. Reson.* **1991**, *93*, 93-141.
- (5) Pervushin, K. V.; Wider, G.; Wüthrich, K. *J. Biomol. NMR* **1998**, *12*, 345-348.
- (6) Yamazaki, T.; Lee, W.; Revington, M.; Mattiello, D. L.; Dahlquist, F. W.; Arrowsmith, C. H.; Kay, L. E. *J. Am. Chem. Soc.* **1994**, *116*, 6464-6465.
- (7) Yamazaki, T.; Lee, W.; Arrowsmith, C. H.; Muhandiram, D. R.; Kay, L. E. *J. Am. Chem. Soc.* **1994**, *116*, 11655-11666.
- (8) Shan, X.; Gardner, K. H.; Muhandiram, D. R.; Rao, N. S.; Arrowsmith, C. H.; Kay, L. E. *J. Am. Chem. Soc.* **1996**, *118*, 6570-6579.
- (9) Kay, L. E.; Ikura, M.; Tschudin, R.; Bax, A. *J. Magn. Reson.* **1990**, *89*, 496-514.
- (10) Vuister, G. W.; Bax, A. *J. Magn. Reson.* **1992**, *98*, 428-435.
- (11) Patt, S. L. *J. Magn. Reson.* **1992**, *96*, 94-102.
- (12) Boyd, J.; Scoffo, N. *J. Magn. Reson.* **1989**, *85*, 406-413.
- (13) Emsley, L.; Bodenhausen, G. *Chem. Phys. Lett.* **1987**, *165*, 469-476.
- (14) McCoy, M.; Mueller, L. *J. Am. Chem. Soc.* **1992**, *114*, 2108-2110.

