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NMR studies of tandem WW domains of Nedd4
in complex with a PY motif-containing region of
the epithelial sodium channel

Voula Kanelis, Neil A. Farrow, Lewis E. Kay, Daniela Rotin, and Julie D.
Forman-Kay

Abstract: Nedd4 (neuronal precursor cell-expressed developmentally down-regulated 4) is a ubiquitin-protein ligase
containing multiple WW domains. We have previously demonstrated the association between the WW domains of
Nedd4 and PPxY (PY) motifs of the epithelial sodium channel (ENaC). In this paper, we report the assignment of
backbone'Ha, HN, ®N, 13C', 13Ca, and aliphatic'*C resonances of a fragment of rat Nedd4 (rNedd4) containing the
two C-terminal WW domains, WW(lI+111), complexed to a PY motif-containing peptide derived fronf thebunit of

rat ENaC, thelP2 peptide. The secondary structures of these two WW domains, determined from chemical shifts of
BCa and *3CB resonances, are virtually identical to those of the WW domains of the Yes-associated protein YAP65
and the peptidyl-prolyl isomerase Pinl. Triple resonance experiments that detéefottehemical shift were necessary

to complete the chemical shift assignment, owing to the large number of proline residues in this fragment of rNedd4.
A new experiment, which correlates sequential residues via tAsinuclei and also detecféda chemical shifts, is
introduced and its utility for the chemical shift assignment of sequential proline residues is discussed. Data collected
on the WW(lI+II)3P2 complex indicate that these WW domains have different affinities fopPzepeptide.

Key words: WW domain, PY motif, Nedd4, ENaC, NMR.

Résumé: La protéine Nedd4 (précurseur neuronal 4 exprimé dans les cellules et réprimé au cours du développement)
est une ubiquitine—protéine ligase ayant plusieurs domaines WW. Antérieurement, nous avons démontré une association
entre les domaines WW de Nedd4 et les motifs PPxY (PY) du canal sodique épithélial (ENaC). Dans cet article, nous
décrivons l'attribution des résonances dets, *HN, N, 13C', 3Ca et 13C aliphatiques du squelette d’un fragment de

la protéine Nedd4 de rat (rNedd4) ayant les deux domaines WW C-terminaux, WW (l1+11l), formant un complexe avec
un peptide a motif PY dérivé de la sous-urftélu ENaC de rat, le peptid@P2. Les structures secondaires des deux
domaines WW, déterminées a partir des déplacements chimiques des résonahi@es ete*CB, sont pratiquement

identiques a celles des domaines WW de la protéine YAP65 associée a Yes et de la peptidyl-prolyl isomérase Pinl. A
cause du grand nombre de résidus proline dans ce fragment de la rNedd4, des expériences de triple résonance détectan
le déplacement chimique déla ont été nécessaires pour compléter I'attribution des déplacements chimiques. Une
nouvelle expérience de corrélation de résidus séquentiels grace a leurs Adlyarixqui détecte également les

déplacements chimiques dela, est présentée et son utilité pour lattribution des déplacements chimiques d’une
séquence de résidus proline est discutée. Les données obtenues concernant le complexe WaRAlitguent que

ces domaines WW ont des affinités différentes envers le pepi@e
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[Traduit par la Rédaction]

Introduction Fig. 1. A schematic representation of the modular structure of

. . the rat homologue of Nedd4, rNedd4, showing the C2 domain,
WW domains, also known as WWP or Rsp5 domains, argnree Ww domains, the E2 binding region, and the ubiquitin-

protein—protein interaction modules approximately 40 aminoErotein ligase (Hect) domain. The second and third WW domains
acids in length (André and Springael 1994; Bork and Sudokye hatched and the region of Nedd4 around these domains that
1994; Hofmann and Bucher 1995; Staub and Rotin 1996)y a5 included in the expressed construct is shown by the thick

These domains contain two highly conserved tryptophangne The sequence of the WW(II+11l) construct with the WW
and an invariant proline, hence the name WW or WWP do gomains underlined is given below. The sequence in lowercase
mains. WW domains are present in a variety of cytoskeletajetters corresponds to vector sequences. Numbering corresponds

and signaling proteins such as the Yes-associated prote{g the recombinant construct as described in the Materials and
YAPGS5, the peptidyl—prolyl isomerase Pinl, dystrophin, theyethods section.

transcriptional activator FE65, formin binding proteins, and -~
the ubiquitin-protein ligate Nedd4—Rsp5—Publ. Similar to c2 WL W wwal Erigi'::mg Hect
other modular binding domains including SH2, SH3, and
PTB domains (Pawson 1995), WW domains mediate protein O—W
interactions in cellular processes.

WW domains bind proline-rich regions of their target pro

teins. The WW domain from YAP65 has been shown to in

. . . . 1
teract in vitro with the sequence PPPPY, found in the WW ;1 mghhthhhbhhhssghiddddkhmledPTLEVLLPTS SGLEPGHEEKODD
doma|n blndll’lg pI’OtemS WBPl and WBP2 (Chen and Sud0| RGRSYYVDHNSKTTTWSKPTMODDPRSKIPAHLRGKTPVDSNDLGPLPPG

1995). Through site-directed mutagenesis of this sequence in '°! WEERTHIDGRVEE INHNLKKTOWEDPRIONVAT TGPAEPYS

WBP1, the PY motif (PPxY) was proposed as the consensus
sequence for YAP65 WW domain binding. The associatiorpolyproline type Il (PPII) helix in the ligand binding site of
of other WW domains with PY motifs has also been demonthe YAP65 WW domain, a conformation adopted by PxxP
strated. The WW domain from dystrophin binds a PY motif motif-containing ligands bound to SH3 domains (Lim et al.
found inB-dystroglycan (Jung et al. 1995). PY motifs found 1994). The peptide binding site of SH3 domains, like that of
in the B and y subunits of the epithelial sodium channel, WW domains, also consists of a flat surface composed of ar-
ENaC, interact with the WW domains of Nedd4 (Staub et al.omatic residues (Pawson 1995), suggesting that a PPII helix
1996). The PY motif found in the-subunit binds to the is a reasonable model for the conformation of a PY motif-
Nedd4 WW domains and the spectrin SH3 domain (Rotin etontaining peptide in the WW domain binding site. This
al. 1994; Staub et al. 1996). The PY motif differs from the similarity in binding surface may also explain why some
SH3-binding consensus sequence, PxxP (Pawson 1993)/W and SH3 domains can bind the same ligands.
However, there are cases where this sequence also interacts€Extensive studies of WW domain-ligand interactions are
with WW domains. The SH3-binding sequence in forminstill lacking. An experimental description of the structure of
(PPLP) interacts with both the Abl SH3 domain and WW a WW domain ligand is currently not available, since only a
domains from formin binding proteins (Bedford et al. 1997; model from the YAP65 WW domain—peptide structure exists
Chan et al. 1996). Similarly, the PPLP sequence in Menand no ligand is present in the case of the Pin1 WW domain
binds the FE65 WW domain (Ermekova et al. 1997). structure. Also, in contrast to some other protein—protein in
Currently, the structures of two WW domains have beerteraction modules, most notably SH2 domains, determinants
determined. The solution structure of the YAP65 WW- do for binding specificity have not been established for WW
main (Macias et al. 1996) was solved in complex with adomains. However, there is some evidence for distinct
peptide derived from WBP1, which includes the PPPPY seligand preferences for different WW domains. We have
guence and the crystal structure of the WW domain from thelemonstrated the association of the PY motif-containing re
peptidyl—prolyl isomerase Pinl was solved, within the-con gions in ENaC with  WW domains from rNedd4 and
text of the whole protein (Ranganathan et al. 1997). In botthYAP65, but not with dystrophin (O. Staub and D. Rotin,
cases, the WW domain structure consists of a compact threenpublished results). Recently, Fowlkes and coworkers
stranded antiparallg-sheet, such that the N- and C-termini showed selective binding in vitro of multiple WW domains
of the sheet are close in space, typical of modular bindingn two Nedd4-like proteins (WWP1 and WWP2) to PY
domains. Conserved hydrophobic residues, including thenotifs from various proteins including WBP1, WBP2,
first tryptophan and the invariant proline, are found in thef-dystroglycan, and RSV-1 Gag (Pirozzi et al. 1997).
core of the domain. The second conserved tryptophan-is loNhether any of these interactions have physiological-rele
cated in the binding surface along with other conserved hyvance remains to be determined.
drophobic residues, including a conserved tyrosine. NMR The biological importance of WW domain — PY motif-in
studies performed on the YAP65 WW domain indicate thatteractions is evident from studies of Nedd4 and ENacC.
this tryptophan contacts the second conserved proline resNedd4 is a modular protein consisting of a C2 domain, an
due in the PY maotif. Since experimental data were not ablé€e2 binding region, and a ubiquitin protein ligase Hect do
to define the structure of the WBP1 peptide in this complexmain, in addition to three or four copies of the WW domain
the PY motif portion of the peptide was modeled as adepending on the species (Fig. I) (Kumar et al. 1992; Staub
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Fig. 2. A schematic representation of tleg 3, andy subunits of Fig. 3. Strip plot from the HNCACB experiment taken at the
the rat homologue of ENaC (rENaC). TM1 and TM2 represent 5N and HN chemical shifts of residuea)(Ser-61 to Ser-67
transmembrane segments. P1 and P2 are proline-rich regions. Pivom WWII and (9 lle-118 to Glu-124 from WWII1.*3Cap
motifs (in boldface) are found in the P2 regions of each subunit. chemical shifts are on the vertical axis. Broken lines reflect

™1 Extracellular  TM2 P1 P2 sequential connectivities.
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and Rotin 1996). The association between Nedd4 and ENaC b
has been demonstrated both in vitro and in living cells, and 20 |
this interaction is mediated by the WW domains of Nedd4
and PY motif-containing regions of ENaC (Staub et al. N " N - g ]
1996). ENaC is located on the apical membrane of polarized _. % 7 B St
epithelia and is responsible for vectoral transport of" Na g et | amed-sw
from the lumen to the blood. Thus, proper regulation of & 40
ENaC is necessary to maintain blood volume, blood pres- #
sure, and sodium balance. ENaC is composed of three struc- 50 — . ‘ ]
turally similar subunitsa, B, andy (Canessa et al. 1993, - | T | ™
1994), which have recently been shown to associate with a 60 - == Rl -
stoichiometry ofa,By (Firsov et al. 1998). Each subunit ;
contains two transmembrane segments, a large extracellular 70 - : P
region, and short N- and C-terminal cytoplasmic tails. The -
PY motifs of ENaC are found in the second of two proline- 1118 K119 K120 T121 Q122 w123 E124

rich regions (P2) located in the C-terminus of each subunit
(Fig. 2) (Schild et al. 1996; Straub et al. 1996). Deletions oral. 1996), we speculate that channel ubiquitination and
mutations within PY motifs in thé3 or y subunits cause degradation may be impaired in the disease, leading to-an in
Liddle’s syndrome (Hansson et al. 19950950 Shimkets crease in the number of active channels at the plasma-mem
et al. 1994; Snyder et al. 1995; Tamura et al. 1996), arbrane and hence to hypertension.
autosomal dominant form of hypertension characterized by The above findings highlight the importance of under
excessive Nareabsorption in the distal nephron (Liddle et standing the interactions of Nedd4 WW domains with the
al. 1963). Mutations that cause Liddle’s syndrome result inPY motifs of ENaC at the molecular level. We have there
increased channel activity, which is thought to be caused bjore focused our studies on solving the three-dimensional
an increase in channel number at the cell surface (Schild eftructure of Nedd4 WW domains in complex with a PY
al. 1995, 1996) and an increase in channel opening (Firsomotif-containing peptide from ENaC. In this paper, we re
et al. 1996). The same mutations also abrogate binding tport the backbonedN, Ha, °Ca, '°C, and ®N) and
Nedd4 WW domains (Staub et al. 1996). Thus, the PY¥ moaliphatic*3C resonances of a fragment of rNedd4 containing
tifs appear to be involved in regulating channel activity. the closely spaced second and third WW domains,
We have proposed a model by which Nedd4 may regulat&®/W(II+IIl), in the presence of a peptide from tH#2 re
channel function by binding ENaC through a WW domain —gion of rat ENaC (rENaC). We describe the application of a
PY motif interaction and subsequently ubiquitinating thenew experiment that connects sequential residues via their
channel through the action of the Hect domain (Staub et af>N nuclei and discuss its utility for backbone resonance as
1996). Indeed, we have recently demonstrated that ENaGignment of sequential prolines. We have also determined
stability and function are regulated by ubiquitination (Staubthe secondary structures of rNedd4 WW domains on the ba
et al. 1997). The C2 domain likely provides the mechanisnsis of **Ca and '3CB chemical shifts and have compared
by which Nedd4, a cytosolic protein, is targeted to thethem with the YAP65 and Pinl WW domains. The available
plasma membrane where ENaC is located (Plant et al. 1997)NMR data have enabled us to identify the WWIII domain as
Since the binding of Nedd4 WW domains to fBeubunit of  a higher affinity binding domain for th@2 peptide, demaon
ENaC is abrogated in Liddle’s syndrome mutants (Staub estrating ligand specificity in the WW domains of Nedd4 and
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Fig. 4. (a) Schematic representation of a polypeptide chain Fig. 5. (a) Schematic representation of a polypeptide chain
showing nuclei correlated (circled) in the showing nuclei correlated (circled) in the HACA_N experiment.
HBCBCA(CO)_N_CAHA experiment.k) Strips from the (b) Strips from the HACA N experiment taken &Ca and 'Ha
HBCBCA(CO)_N_CAHA experiment taken at tHéla(i) and chemical shifts for residues Lys-120 to Met-128 of WW(II-+III).
IN(i + 1) chemical shifts for residues Asp-74 to Pro-80 of Resonances for Asp-125 were not obser/éN. resonances of
WW(lI+I11). *3Caf chemical shifts are on the vertical axis. Pro-75 are aliased in this spectrum. An arrow indicates the
Arrows indicate negative crosspeaks. negative crosspeaks and broken lines demonstrate sequential

correlations. Asterisks represent unrelated crosspeaks.

S ACPRC Ho 9 a
N «Ca)> ¢ {N)-Ca—C HY 9 H Ho 0

AN
Cy
b
b
20
- - o 110— ) {
30 - - - ole o
E 40 e 11 -Te '
g 5— l e
3': 3 -& I s il - ;
®-|- n
g 50 & 120 *{-® (- e~
60 -] - - °’ ..——N 'u_,z a Q
- - ) 125— 0 +0 | | *Q
70 - : "
130— '
D74 P75 R76 S77 K78 179 P80

K120 T121 Q122 W123 E124 P126 R127 M128

providing a foundation for future structural studies of the

BP2 peptide—WWIII complex. alyzed using VNMR, nmrPipe/nmrDraw (Delaglio et al. 1995), and

NMRView (Johnson and Blevins 1994) software.
A titration of the WW(lI+11) fragment withP2 peptide was

Materials and methods monitored by recording gradient sensitivity enhanct#d-1°N
] heteronuclear single quantum coherence (HSQC) spectra (Zhang et
Sample preparation al. 1994). HSQC spectra were recorded with 128 comp]émcre-

A 10 histidine tagged fragment containing the second and thirdnents, using 16 scans. Spectral widths were 8008 HHNY and
WW domains (residues Pro-397 to Ser-510) of rNedd4 wasig50 Hz {5N). The titration was stopped after the addition of
generated by PCR from cDNA (Staub et al. 1996) within a pET19bg.0 mM P2 peptide, although the spectra were still changing (see
vector (Studier et al. 1990). Numbering of the residues in this papepelow). Triple resonance experiments were performed on the
is from the beginning of the recombinant construct (Fig. 1), withww(ll+II1)-BP2 complex in 10 mM sodium phosphate, pH 6.0,
Pro-28 starting the Nedd4 sequence owing to 27 extra N-terminayoos H,0 10% D0, 30°C.
residues for the histidine tag and a proteolytic cleavage site; these The three-dimensional HNCO (Kay et al. 1994), HNCACB
extra sequences were not removed. Isotopically enrichegwittekind and Mueller 1993), HBCBCACONNH (Grzesiek and
WW(lI+1lT) was expressed irEscherichia coliBL21 (DE3) cells  Bax 1992), and HNCAHA (Kay et al. 1992) experiments were- per
grown in 2 L of M9 minimal medium containing 3 g/L formed to assign th&N, 13C' (carbonyl),’3Cal, 1308, *HN, and'Ha
[**Clglucose and 1 g/L'PNJNH,CI as the sole carbon and nitrogen nyclei. These spectra were recorded with spectral widths of
sources, respectively. After induction with 1 mM isopropyl 8000 Hz (HN) and 1164 Hz ®N). For the HNCO experiment, 64
B-o-thiogalactoside (IPTG), the overexpressed protein (16.1 kDapomplex { and 28 complex,tincrements were recorded, using 16
was purified to homogeneity using Niaffinity chromatography, scans and a spectral width of 1541 H¥C). The HNCACB and
followed by anion exchange and size exclusion chromatography{BCBCACONNH experiments were recorded with 60 complex t
Purity and identity of the WW(II+1ll) protein fragment were con and 28 complex,tincrements, using 16 scans and a spectral width
firmed by SDS-PAGE, electrospray mass spectrometry, and amingf 7650 Hz {#Ca/B). The 'Ha chemical shifts were obtained from
acid analysis. A synthetic 15-residpe2 peptide, derived from the the HNCAHA experiment recorded with 48 complex and 28
BP2 region of rENaC (TLPIPGTPPPNYDSL), was titrated into an complex $ increments, using 48 scans and a spectral width of
NMR sample containing 1.0 mNFC- and**N-labeled WW(II+IIl) 2000 Hz {Ha). The HBCBCACOCAHA experiment, which
in 10 mM sodium phosphate, pH 7.4, 90%®10% D,O. Follow-  correlates chemical shifts of intraresidé®Ca, 13CB, Ha, and
ing the peptide titration, the pH of the sample was lowered tol3c' nyclei (Kay 1993), was used to confirm the backbone as

pH 6.0 by the addition of concentrated HCI. signments. In addition, the chemical shifts’8€' nuclei of resi
dues preceding proline were obtained using this experiment. The
NMR spectroscopy HBCBCA(CO)_N_CAHA experiment (to be described else

NMR experiments were performed at 30°C on a Varian INOVA where by L. Kay and coworkers), which correlates #€a (i),
500-MHz spectrometer equipped with a pulsed field gradient unit-3Cf(i), and *Ha(i) chemical shifts of a given residue) (with
and a triple resonance probe. NMR spectra were processed and ahe N(i + |) chemical shift of the next residue, was used to

© 1998 NRC Canada
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Fig. 6. 1N-'HN HSQC spectrum of the WW(II+lI1)BP2 complex. Spectra were recorded at 30°C with a WW(II+lIl) concentration of

1.0 mM and g3P2 peptide concentration of 8.0 mM. Backbone amide cross peaks have been labeled. For clarity, backbone resonances
for amino acids in the histidine tag have not been labeled. Side-chain glutamine and asparagine amide groups and tryptophan indoles
have not been assigned or labeled.

103
= ne @
N6o % ~ 116 G“@@ G109 o 108
- (882 ©Te3
© 'sas KD 01, 117 Ges
[®) g AHmas © 15 s61
s14& o A LI ° Qg (] o 5 A
G =2 qaa 8100 639 B G434 onz ﬁ 86 °
R1276Y n@ A q 1 -} 2o o2 e & 118
D @ Ng 120 -g Tes @ T20 O '[36® o
- @ N
5 N"% 5 121 = FIG® Ds°7 Nsogéﬁb@éoas 'ﬁf;@ ,E
2 & ’ ©oTi07
Lo7, w1 f =l | 122 v 20 52 @ wind kizo &, L 118 8.
@ @7@ ',/" ’ 123 vsst2le @ @ @\g“ OD?‘;@KHO =
N115 & _ o, mz
87 85 83 81 79 77 -
THN (ppm) 123
L 128
eo
e o
e
[ 133
10 9 8 7 6

THN (ppm)

assign thé®N nuclei of proline residues. The HBCBCACOCAHA  WWII domain but clear sequential connectivities for resi
and HBCBCA(CO)_N_CAHA experiments were recorded with 54 dues of the WWIII domain and some residues of the WWII
corlnp_lgxhg arf"27%1'580TZDJ‘EXZ;'ESB‘?'Te)“tsldu(s;ggowzzzaens% ggg ;pz)ag domain. The residues in the YAP65 WW domain cerre
tral widths o Z) an Z) In H H H H . .

' ' ; ’ ’ sponding to the regions of WW(lI+IIl) indicated in the fi
(Fy, P F5), respectively. A new experiment, the HACA_N, was ulrae Werge shown tgo interact vv(ith a) PY motif-containi%g

designed to correlate the chemical shiftsfu(i), *°Ca(i), and . ) . :
15N(i) with the 1>N(i + I) chemical shift (to be described elsewhere peptide. Although crosspeaks for residues in the WWII bind

by L. Kay and coworkers). This experiment was recorded with 32N region were broadened in the HNCACB, these cross-
complex t and 58 complex;tincrements, using 16 scans and spec Peaks were observed in the HBCBCACONNH experiment

tral widths of 8008 Hz'Ha), 1375 Hz Ca), and 3200 Hz'{N).  (data not shown).
The side-chain assignments for aliphatf€ nuclei were obtained The WW(lI+1Il) protein contains 15 proline residues; in
with the CCC-TOCSY(CO)NNH experiment (Grzesiek et al. 1993, c|yding two regions with sequential prolines. Therefore, a
;ggaSBeéglé 2_\(9:902&'L\Jlangxth;i?er?%parameters as for the HNCACR,mplete backbone assignment of WW(II+11l) was not possi
P ' ble using experiments that detect information on thiN
nucleus of amino acids only. The backbone assignments
Results mentioned above were augmented using the
HBCBCACOCAHA and HBCBCA(CO)_N_CAHA experi
NMR assignment strategy and resonance assignments  ments to assigh®C nuclei in residues preceding proline and
of WW(II+I11) 5N nuclei of proline residues, respectively. Since fi
Using the HNCO, HNCACB, HBCBCACONNH, and chemical shift is detected, the HBCBCACOCAHA and
HNCAHA experiments, we were able to assign 80% of allHBCBCA(CO)_N_CAHA experiments also connect sequen
backbone resonances. A strip plot from the HNCACB expertial proline residues. In the HBCBCA(CO)_N_CAHA exper
iment with data taken at thN and*HN chemical shifts of iment, an Xaa-Pro connectivity is identified using two pieces
residues Ser-61 to Ser-67 and lle-118 to Glu-124 in theof information. The chemical shifts of prolin®N nuclei
WWII and WWIII domains, respectively, is presented in (134-140 ppm) are significantly downfield of the chemical
Fig. 3. The spectrum shows quite weak crosspeaks for thehifts of non-proline'®N nuclei (105-132 ppm). In addition,
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Fig. 7. Secondary structure of WW(II+III) for residues Pro-28 to Fig. 8. Sequence alignment of WW(II+IIl) of Nedd4 with WW

Ser-141.ACa-ACB, the deviations of3Ca and *3CB chemical domains of YAP65 and Pinl and comparison of their secondary
shifts (Metzler et al. 1993) observed in WW(II+11l) from those  structures (Macias et al. 1996; Ranganathan et al. 1997).
for residues in a random coil conformation (Spera and Bax Residues in boldface represent those amino acids assigned to the
1991), is plotted as a function of residue number. Positive valueshreep-strands of the WW domain structure.
indicate a-helical structure, whereas negative values defate B p2 B3 % identity
extended structure. Nedd4 WWII .. .GLPPGWEEKQDDR . GRSYYVDHNSKTTTWSKETMQD . . . "37 1 "‘
75 bt — — s — YAP65 WW . .. PLPAGWEMAKTSS . GQRYFLNHIDQTTTWQDPRKAM. . . - 37
501 wwil Wwilil | «-helical Pin1 WW . . . KLPPGWEKRMSRSSGRVYYFNHITNASQWERPSGNS . . . J 48
Bl B2 p3
% 25 4 Nedd4 WWIIl . . . PLPPGWEERTHTD . GRVFFINHNIKKTQWEDPRMON . . . I "
? 0 irregular structure YAPB5 WW ... PLPAGWEMAKTSS . GQRYFLNHIDQTTTWODPRKAM. . . _143 42
§ 25 .' Pin1 WwW . . .KLPPGWEKRMSRSSGRVYYFNHITNASQWERPSGNS. . . _l

5.0 r
B-strand

L - L I These assignments will be deposited in the BioMagResBank
30 40 50 60 70 80 90 100 110 120 130 140 (Seavey et al. 1991).
residue number

-1.5

Secondary structure of WW(II+III)

_ _ ~ 13Ca and*3CB chemical shifts were used to determine the
the 3Ca and *3Cp resonances of residues preceding prolinesecondary structure of WW(II+II) (Metzler et al. 1993).
are opposite in sign to those of residues precedlng nonthe WWII and WWIII domains include residues 38—-75 and
proline amino acids. Once tHéCa, **CB, and*Ha chemical  95-130, respectively, separated by a linker that does not
shifts are known, assignment of the HBCBCACOCAHA andcontain regular secondary structure (Fig. 7). Each do
HBCBCA(CO)_N_CAHA spectra is straightforwardata  main consists of thre@-strands, where the second and
from the HBCBCA(CO)_N_CAHA experiment are shown in third B-strands are separated by a helical turn. As expected
Fig. 4 with strips taken at theHa(i) and™N(i + I) chemical  on the basis of greater than 30% sequence identity of the in-
shifts for residues Asp-74 to Pro-80, demonstrating the highividual rNedd4 WW domains (WWIl and WWIII) to the
quality of the spectrum and the negative correlations for resyap65 and Pin1 WW domains, the secondary structures of

idues N-terminal to proline. the rNedd4 WW domains are virtually identical to those of
In the regions of WW(II+I1l) with sequential proline resi- YAP65 and Pinl (Fig. 8).
dues a complete chemical shift assignment of't@z, 13Cp, Of interest,*Ha chemical shifts of Lys-68 and Asp-125

andHa nuclei was not obtained and, therefore, i@ and  were 2.77 and 2.83 ppm, respectively, significantly upfield
15N resonance assignment could not be completed from thef typical values. The homologous residues in the YAP65
HBCBCACOCAHA and HBCBCA(CO)_N_CAHA experi- and Pin1 WW domains are in close proximity to the aro-
ments alone. The HACA_N experiment was designed to famatic rings of the first conserved tryptophan. Thus, these
cilitate assignment of sequential proline residues. Figure Bbviously ring current shifted values for Lys-68 and
shows data from the HACA_N experiment with strips takenAsp-125 are consistent with an overall similar tertiary
at the®*Ca(i) and*Ha(i) chemical shifts of residues Lys-120 structure of the WWII and WWIII domains of Nedd4 to
to Met-128. The chemical shifts of tHeN nuclei for resi previously published WW domain structures.
dues (i)and (i+ 1) are along the vertical axis. Because the
spectral width in the®N dimension was 3200 Hz (105- Binding of BP2 to WWII and WWIII
132 ppm), N chemical shifts of proline, which are all  As mentioned above, HSQC spectra of WW(II+lIl) were
downfield of 132 ppm, were aliased in these spectra. Nastj|| changing after the addition of 8 m\8P2 peptide at
correlations were observed at tHHG chemical shift of which point the titration was Stopped_ An 8:1 ratio mz
Asp-125, perhaps owing to inefficiefC decoupling at peptide to WW(II+II1), without full binding of the WW de
this residue, so only a Pro-Xaa connectivity was seen foimains, suggests a low affinity for tf#2 peptide for at least
Pro-126. Both Xaa-Pro and Pro-Xaa connectivities wergne of the WW domains. The WW(II+Ill) resonances could
seen for other prolines. As a result of weak resonances ange grouped into two sets on the basis of their behavior dur
spectral overlap in théHa dimension with HO, data re  ing the fP2 peptide titration (Fig. 9). Resonances from
corded on WW(II+Il) did not confirm the proline—proline \wwii continued to change throughout the titration, whereas
connectivities. This problem should be overcome by recordthose from WWIII reached a maximal intensity. The titration
ing spectra on a sample in 100%®. However, the other curves shown in Fig. 9 for WWIII were fit to the following
sequential connectivities observed (for Xaa-Pro, Pro-Xaagquation:l = I, + (Inax— o) [BP2ked (K12 + [BP2)ed), Where
and Xaa-Xaa) were useful in confirming previous assign| 'is the initial intensity, |, iS the maximal intensity,
ments. [BP2}ce is the concentration of free peptide, alg), is the
Figure 6 shows an HSQC spectrum of the WW(lI+IIl)- concentration ofP2 peptide required for maximal saturation
BP2 complex, labeled with the assignments. Resonance asef the intensity for that resonancgPR},.. is calculated by
signments were obtained for 96% of th, 98% of *HN, subtracting the concentration of added peptide from the con
96% of 13Ca, 95% of3C, and 95% of'Ha positions. In ad  centration of the complex as estimated from the intensity
dition, 90% of aliphatic**C chemical shifts were assigned. change. From these plots, a rangeis, values from 0.55 to
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Fig. 9. Intensity change for crosspeaks of WW(lI+IIl) upon titrationf32 peptide as a function of peptide concentration for residues
(a) Asp-49 and (b Ser-54 in WWII and (¢ His-106 and (3 Met-128 in WWIII. Solid circles represent the intensity of the crosspeaks
for the given residues. Error bars shown represent the noise level in the HSQC experiment.
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3.00 mM was observed for the 10 residues with cross peakNCAHA experiment, the'Ha nuclei of these residues
in the titration spectra that could be clearly quantified. could not be assigned unambiguously and ¥@& and >N
chemical shifts could not be obtained from the
) . HBCBCACOCAHA and HBCBCA(CO) N_CAHA experi
Discussion ments, respectively.

A complete chemical shift assignment for the Nedd4 The WW(II+IIl) polypeptide contains two regions with
WW(II+11l) fragment was not possible using traditional-tri the Seéquence Xaati 1)-Pro()-Pro(i + 1)-Xaa(i+ 2), making
ple resonance experiments owing to the number of prolind difficult to obtain complete assignments using only the
residues in the polypeptide. The HBCBCACOCAHA and HBCBCACOCAHA and _HBCBCA(CO)TN_CAHA, exper
HBCBCA(CO) N_CAHA experiments are useful for ments. The chemical shifts dfCap and *Ha nuclei of the
assigning proline-rich sequences since magnetization i§70() residues cannot be obtained independently of the
detected on the'Ha rather thanHN nucleus. The HBCBCACOCAHA and HBCBCA(CO)_N_CAHA experi
HBCBCACOCAHA experiment is also useful for cen ments. The;refore, if 'ghere is more than one region with this
firming assignments using théC chemical shift. An  Sequence in a protein or there are regions with more than
HCC-TOCSY(CO)NNH experiment (Logan et al. 1992) two sequential proline residues, unamblguou§schem|cal shift
was performed to assign aliphatic proton resonances. Thassignments of th€'C of residue Profiand the'*N of resk
spectra were of high quality and yieldéda chemical shifts ~due Pro(i+ [) are not possible using only these experiments.
for all residues that did not precede a proline. We attempted he HACA_N experiment has the advantage in that sequen
to assign these remainintHa resonances using théCa  tial residues are correlated by the same type of nucfés,
and the3CB chemical shifts obtained from the HNCACB in Therefore, this experiment can be used to assign backbone
combination with the HBCBCA(CO)_N_CAHA, which dis resonances in sequential proline residues as is done with the
tinguishes residues preceding proline from those precedingfNCACB experiment for non-proline-containing regions.
non-proline amino acids. However, for many cases the Experiments designed to assign sequential proline
chemical shifts of thé*Ca and *3CB nuclei in residues pre  sequences are extremely important because proline-rich
ceding proline were degenerate. Thus, without recording theequences play a critical role in protein recognition. Ia ad
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dition to WW domains, SH3 and EVH1 domains also recog Thus, different WW domain — PY motif interactions may
nize proline-rich regions in their targets. The EVH1 domainprovide a mechanism to couple Nedd4 to numerous
of Mena, a protein implicated in cytoskeletal organization,ubiquitination targets.
interacts with a region in profilin containing long stretches In summary, we have assigned backbone and aliph#Gic
of prolines (Gertler et al. 1996). SH3 domains, found in aresonances of a fragment of rNedd4 consisting of the second
variety of proteins including nonreceptor tyrosine kinesesand third WW domains. The completeness of this assign
and cytoskeletal components, recognize ligands with thenent was made possible using experiments that observe
consensus sequence PxxP (Alexandropoulos et al. 1996pnnectivities involving proline residues including the
Pawson 1995; Yu et al. 1994), such as the VPPPVPPRRRIBCBCA(CO)_N_CAHA and HACA_N experiments. The
ligand for the Grb2 SH3 domains in Sosl (Rozakis-AdcockHACA N experiment will be particularly useful in assign
et al. 1993). Several structures of SH3 domain—peptidenent of proline-rich regions because sequential residues are
complexes have been solved by NMR. Sequential assigriinked by !N correlations. These experiments may provide
ments of the peptide have been obtained in most cases usimgtimal information when performed on samples ipCDto
a strategy based on nuclear Overhauser effect (NOEAvoid overlap of the detectetHa resonances with water.
(Teresawa et al. 1994; Wittekind et al. 1994), which in Experiments such as these that allow complete assignment
volves the identification of residue type usifg—*H or  through proline-rich regions of proteins are critical owing to
IH-13C correlation spectra followed by NOE spectroscopythe abundance of such sequences in protein recognitien mo
(NOESY) experiments to place the residues in sequential ottifs, including those for WW, SH3, and EVH1 domains. Evi
der. The triple resonance HACA N experiment udd¥—  dence was obtained from NMR experiments for different
5N connectivities to obtain sequential assignments and anasffinities of WWII and WWIII for theP2 peptide, suggest
ysis of the data is less complicated than for other correlatiorning different ligand preferences for each domain. These re
and NOE-based approaches. Therefore, this experiment widlults provide a foundation for future studies of a complex of
greatly facilitate backbone resonance assignment of sequeffP2 of ENaC with the WWIIl domain of Nedd4.
tial proline residues, particularly in larger complexes. Experimental structural data on the peptide conformation
The peptide titration of WW(||+|||) provided evidence for and the interactions with the WW domain that should be fa-

a difference in the binding affinities of each WW domain for cilitated by the experiments described here will likely pro-
the P2 peptide (Fig. 9). However, the calculatég, value, vide 'S|gn|f|can't' insights into thg mechanism of specific
the concentration of peptide at which half-maximal proteinProtein recognition by WW domains.

resonance intensity is observed, is not reflective of a binding
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