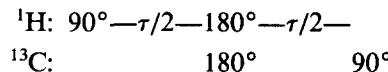


Simultaneous Measurement of ^{13}C Multiplicities and ^1H and ^{13}C Chemical Shifts

LEWIS E. KAY*† AND J. H. PRESTEGARD‡


Departments of *Molecular Biophysics and Biochemistry and ‡Chemistry, Yale University,
New Haven, Connecticut 06511

Received December 29, 1987

^{13}C NMR is a well-recognized tool for the investigation of structural and dynamic properties of organic molecules (1, 2). ^{13}C chemical shifts and coupling constants are very sensitive to bond geometries and hybridization (3), and carbon relaxation rates provide a sensitive probe of motional spectral density functions (4-6). The major limitations associated with applying ^{13}C NMR, namely low sensitivity and low natural abundance, have been largely circumvented with elegant pulse schemes which make use of ^{13}C - ^1H heteronuclear multiple-quantum coherence (1, 2, 7). Figure 1a indicates one of several such sequences, developed by Bax and co-workers (7). The sequence, as normally executed, generates a ^{13}C - ^1H correlation map where proton-decoupled ^{13}C chemical-shift information is obtained during t_1 and ^{13}C -decoupled ^1H magnetization is acquired during t_2 .

Decoupling, although an integral part of these experiments, unfortunately results in a loss of information concerning ^{13}C multiplicities. This is not simply a matter of choice. The 180° ^1H pulse applied in the middle of the t_1 period, which removes ^1H chemical shifts from the t_1 domain, also generates ^1H decoupling during this period. In the absence of this pulse peaks are generated which, in addition to being modulated by both ^1H and ^{13}C chemical shifts in ω_1 , have the undesirable feature of being in the phase-twisted mode (7). ^1H - ^{13}C coupling could be retained in the t_2 domain by the simple omission of ^{13}C noise decoupling during acquisition; however, the more useful information concerning ^{13}C multiplicities would not be retrieved.

In this communication we provide a simple extension of the sequence of Fig. 1a which allows for the determination of ^{13}C multiplicities in addition to ^{13}C and ^1H chemical shifts. Figure 1b illustrates the proposed sequence. The effects of this sequence on an isolated heteronuclear AX spin system can be understood qualitatively in the following way. Two-spin heteronuclear multiple-quantum coherence is generated by the

portion of the sequence, with $\tau/2 \sim 1/(4J_{AX})$, where J_{AX} is the geminal ^{13}C - ^1H coupling constant. ^{13}C magnetization is then allowed to evolve for t_1 , with ^1H mag-

† Present address: Department of Chemistry, Yale University, New Haven, Connecticut 06511.

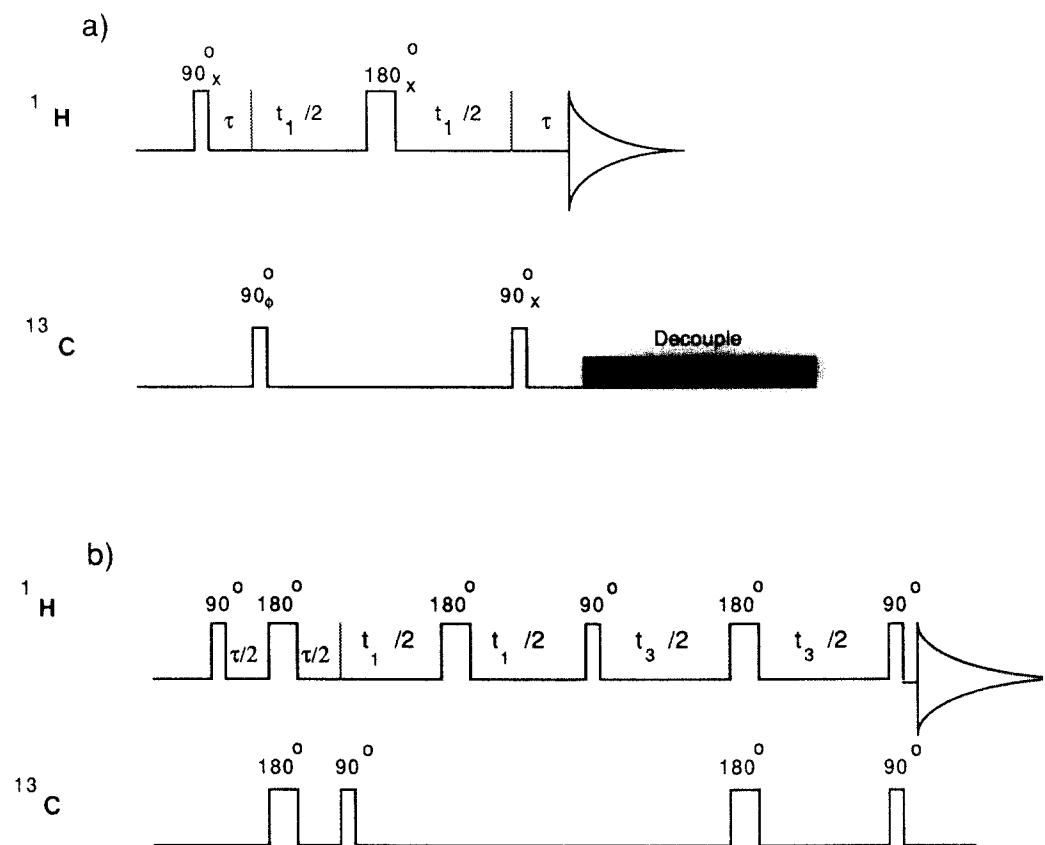


FIG. 1. Pulse schemes for correlating ^{13}C and ^1H chemical shifts. The sequence of (a), proposed by Bax and co-workers, results in a decoupled spectrum in both ω_1 and ω_2 . The sequence of (b) allows a determination of ^{13}C multiplicities, in addition to ^{13}C and ^1H chemical shifts.

netization and heteronuclear scalar coupling effects refocused through application of the π pulse to the ^1H spin in the middle of the t_1 period. Double-quantum coherence is converted to ^{13}C single-quantum magnetization by application of the next 90° ^1H pulse. ^{13}C magnetization evolves for an additional evolution period, t_3 , under the effects of J modulation only and is finally reconverted to ^1H magnetization for observation during t_2 by application of the final 90° $\{^1\text{H}, ^{13}\text{C}\}$ pulses. In all applications considered so far, t_3 was set equal to t_1 so that a two-dimensional data set was generated with both ^{13}C - ^1H geminal couplings and ^{13}C chemical-shift information recorded in t_1 . In principle, however, magnetization could be collected as a function of t_1 , t_2 , and t_3 to generate a three-dimensional profile (8, 9). ^{13}C decoupling would normally begin at $\sim\tau$ after application of the final pulses to allow for refocusing of the antiphase ^1H components. However, we have not implemented ^{13}C decoupling in the experiments presented.

In ^1H -observe, ^1H -X nucleus correlation experiments, interfering signals arising from protons not coupled to the X nucleus must be removed. In the sequence of Fig.

1b, uncoupled ^1H magnetization is suppressed by alternating the phase of the final 90° ^{13}C pulse with each acquisition (10). Further suppression can be achieved by a scheme proposed by Bax and co-workers (11) which effectively saturates ^1H magnetization not directly coupled to the X spin at the outset of the experiment.

Phase-sensitive spectra can be generated with the sequence of Fig. 1b using either the method of States *et al.* (12) or TPPI (13). Table 1 shows the phase-cycling scheme employed. In general, $t_{1,\text{max}}$ should be kept as short as possible so that ^1H - ^1H scalar modulations do not interfere with acquisition of the data in the phase-sensitive mode (7).

The advantages of this sequence for structural analyses from ^{13}C , ^1H NMR data parallel those of the original sequence (7) in that magnetization originates on the sensitive ^1H nucleus and is detected through ^1H 's as well. A comparison to the sequence of Fig. 1a shows that the sequence of Fig. 1b, with ^{13}C decoupling during t_2 , is at least a factor of 2 less sensitive since ^{13}C multiplicities are not suppressed in ω_1 . The increased number of delays and pulses tend to decrease the relative sensitivity further. However, the sensitivity of the proposed sequence is superior to ^{13}C -observe methods which provide information concerning ^{13}C multiplicities, and ^1H and ^{13}C chemical shifts (14).

Table 2 indicates the ^{13}C cross-peak multiplicities generated by this sequence for various spin systems. Of particular interest is the fact that the ^{13}C multiplicity pattern for an AX_3 spin system is in the ratio 3:1:1:3, and not in the ratio 1:3:3:1 which might have been expected. Insight into why this is the case can be obtained from a product operator description (15) of the effects of the sequence of Fig. 1b on an AX_3 spin system. A simple calculation, including the effects of the phase-cycling scheme depicted

TABLE I
Phase Cycling for the Sequence of Fig. 1b

^1H :	90°	180°	180°	90°	180°	90°	Receiver
	x	x	x	y	x	x	x
	x	x	x	y	x	x	$-x$
	x	$-x$	$-x$	y	$-x$	x	x
	x	$-x$	$-x$	y	$-x$	x	$-x$
	x	x	x	$-y$	x	x	x
	x	x	x	$-y$	x	x	$-x$
	x	$-x$	$-x$	$-y$	$-x$	x	x
	x	$-x$	$-x$	$-y$	$-x$	x	$-x$

^{13}C :	180°	90°	180°	90°
	x	x	x	x
	x	x	x	$-x$
	$-x$	x	$-x$	x
	$-x$	x	$-x$	$-x$
	x	$-x$	x	x
	x	$-x$	x	$-x$
	$-x$	$-x$	$-x$	x
	$-x$	$-x$	$-x$	$-x$

TABLE 2
¹³C Multiplicity Patterns for Several Spin Systems

Spin system	¹³ C multiplicity	Separation of multiplet components
AX ₃	3:1:1:3	J_{AX}
AX ₂	1:1	$2J_{AX}$
AMX ^a	1:1	$J_{AX} + J_{MX}$
AX	1:1	J_{AX}

Note. A = carbon spin; X, M = proton spins.

^a This assumes that $J_{AX} \sim J_{MX}$. A product operator calculation shows that in the most general case, a quartet is expected with a separation between the outer two lines of $J_{AX} + J_{MX}$ and a separation between the inner two lines of $|J_{AX} - J_{MX}|$. The intensities predicted are proportional to $|\sin \pi J_{AX}\tau + \sin \pi J_{MX}\tau|$ for the outer two lines and $|\sin \pi J_{AX}\tau - \sin \pi J_{MX}\tau|$ for the inner two lines.

in Table 1 shows that, in the absence of relaxation, ¹³C magnetization is modulated in t_1 according to

$$\exp(i\omega_A t_1) \cdot [\cos^3(\pi J_{AX} t_1) - 2 \sin^2(\pi J_{AX} t_1) \cos(\pi J_{AX} t_1)], \quad [1]$$

where ω_A is the frequency of the ¹³C nucleus and J_{AX} is the A-X scalar coupling constant. After some algebra, Eq. [1] becomes

$$(1/8) \cdot [\exp\{i(\omega_A \pm \pi J_{AX})t_1\} + 3 \exp\{i(\omega_A \pm 3\pi J_{AX})t_1\}]. \quad [2]$$

This shows clearly that multiplet components are observed with a 3:1:1:3 intensity pattern.

It is important to note also that both methylene and methine fragments produce doublets. However, CH₂ and CH fragments are easily distinguished since the doublet separation is $2J_{AX}$ in the former case and only J_{AX} in the latter case.

The sequence of Fig. 1b was tested using a sample consisting of 150 mM alanine and 150 mM glycine dissolved in D₂O at 303 K. Cr(AcAc)₃ was added to the solution, giving a final concentration of 1.5 mM, to act as a source of random fields. This greatly shortens the ¹H T_1 of both alanine and glycine and hence also the experimental time. The data were acquired on a homebuilt 490 MHz spectrometer operating in the Fourier transform mode. Quadrature in ω_1 was obtained using TPPI (13). Three hundred experiments, consisting of 1 K complex points per experiment, were acquired with a t_1 increment of 83 μ s to give a $t_{1,\max}$ of 25 ms. A 3-s relaxation delay was used. The total measuring time was 2.9 h. The data were processed on a VAX 11/750 computer equipped with a CSPI Mini-map array processor using software written by Dr. D. Hare. The first 600 points in t_2 were processed using a pure sine-bell function and then zero-filled to 2K. In t_1 a cosine-bell function was applied to all 300 points and the data were zero-filled to 2K. Figure 2 shows column cross sections indicating the multiplet patterns for AX (α CH of alanine), AX₂ (α CH₂ of glycine), and AX₃ (β CH₃ of alanine) spin systems which are in excellent agreement with the results in Table 2.

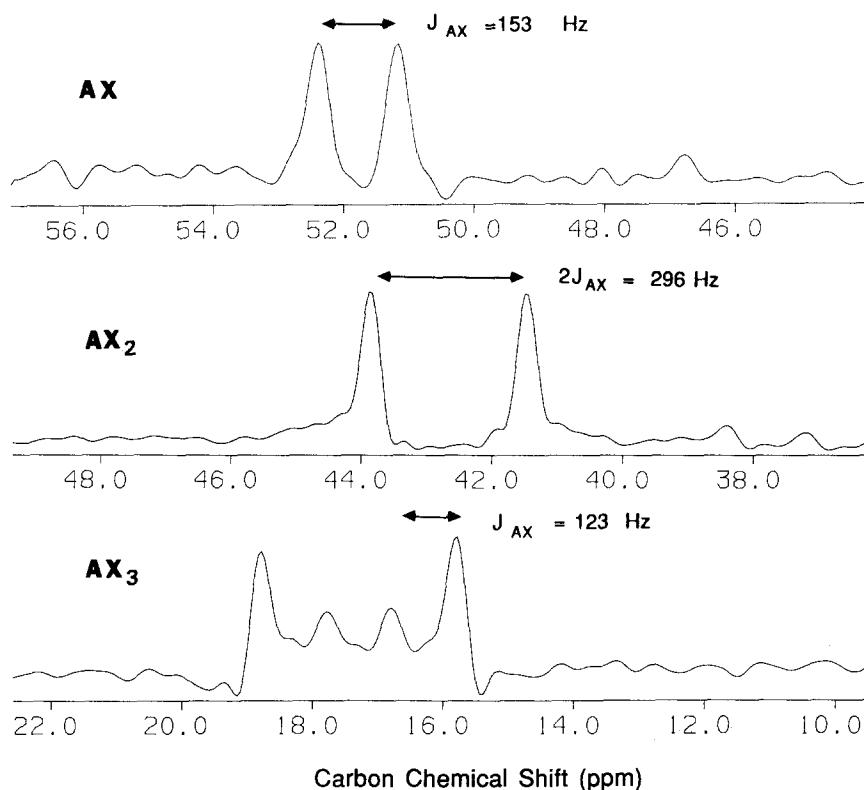


FIG. 2. Column cross sections through satellite peaks of ^1H resonances centered at $\delta = 3.78$ ppm (αCH ala, AX), $\delta = 3.57$ ppm (αCH_2 gly, AX₂), and $\delta = 1.49$ ppm (βCH_3 ala, AX₃). Proton chemical shifts are relative to H_2O ($\delta = 4.72$) while ^{13}C chemical shifts are relative to TSP.

In summary, the sequence that we have described provides a simple way of simultaneously measuring the multiplicity of ^{13}C resonances as well as ^1H and ^{13}C chemical shifts. Substantial improvements in sensitivity are obtained over schemes which provide similar information via direct detection of ^{13}C magnetization (14).

ACKNOWLEDGMENTS

This work was supported by Grants GM-32243 and GM-33225 from the National Institutes of Health and by a predoctoral fellowship to L.E.K. from the Natural Sciences and Engineering Research Council of Canada. The research benefited from instrumentation provided through shared instrumentation programs of the National Institute of General Medical Science, GM 32243S1, and the Division of Research Resources of NIH, RR02379. We thank Dr. D. Hare for writing the 2D NMR processing, display, and plotting routines and Dr. B. Bangarter for helpful discussions.

REFERENCES

1. G. WAGNER AND D. BRUHLER, *Biochemistry* **25**, 20 (1986).
2. M. F. SUMMERS, L. G. MARZILLI, AND A. BAX, *J. Am. Chem. Soc.* **108**, 4285 (1986).
3. R. RICHAUZ, H. TSCHESCHE, AND K. WÜTHRICH, *Biochemistry* **19**, 5711 (1980).
4. R. RICHAUZ, K. NAGAYAMA, AND K. WÜTHRICH, *Biochemistry* **19**, 5189 (1980).

5. L. G. WERBELOW AND D. M. GRANT, in "Advances in Magnetic Resonance" (J. S. Waugh, Ed.), Vol. 9, p. 189, Academic Press, San Diego, 1977.
6. R. L. VOLD AND R. R. VOLD, *Prog. NMR Spectrosc.* **12**, 79 (1978).
7. V. SKLENAR AND A. BAX, *J. Magn. Reson.* **71**, 379 (1987).
8. C. GRIESINGER, O. W. SØRENSEN, AND R. R. ERNST, *J. Magn. Reson.* **73**, 574 (1987).
9. C. GRIESINGER, O. W. SØRENSEN, AND R. R. ERNST, *J. Am. Chem. Soc.* **109**, 7227 (1987).
10. G. BODENHAUSEN AND D. J. RUBEN, *Chem. Phys. Lett.* **69**, 1 (1980).
11. A. BAX AND S. SUBRAMANIAN, *J. Magn. Reson.* **67**, 565 (1986).
12. D. J. STATES, R. A. HABERKORN, AND D. J. RUBEN, *J. Magn. Reson.* **48**, 286 (1982).
13. D. MARION AND K. WÜTHRICH, *Biochem. Biophys. Res. Commun.* **113**, 967 (1983).
14. P. BOLTON, *J. Magn. Reson.* **46**, 343 (1982).
15. O. W. SØRENSEN, G. W. EICH, M. H. LEVITT, G. BODENHAUSEN, AND R. R. ERNST, *Prog. NMR Spectrosc.* **16**, 163 (1983).