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A simple product operator description of the strongly coupled AB and ABX spin systems
is developed. The utility of this description in the investigation of the effects of strong
coupling is illustrated in 2 number of examples. © 1988 Academic Press, Inc.

INTRODUCTION

The product operator representation of the density operator devised by Serensen
et al. (1) and by Packer and Wright (2) has revolutionized the way in which the
evolution of weakly coupled spin systems in modern NMR experiments is described.
The product operator description is so much more compact and comprehensive than
the detailed element-by-element density matrix description that even the most complex
2D NMR experiments can be described with ease. Motivated by the success of the
product operator descriptions of weakly coupled spin systems (I, 2), we have inves-
tigated product operator descriptions for the AB and ABX strongly coupled spin
systems. Kumar ez al. (3, 4) have investigated the behavior of these spin systems
during various spin-echo and multiple-quantum coherence experimemts using
element-by-element density matrix calculations, and have shown the analysis to be
very complicated.

In this paper, we investigate the behavior of the simple product basis operators
(developed for weakly coupled spin systems) under the influence of Zeeman and strong
scalar coupling. Some simple examples are present to demonstrate the utility of the
product operator description in strongly coupled systems.

THEORY

AB spin system. For a strongly coupled two-spin system, the spin Hamiltonian #
(in s7") in the absence of RF fields is

A = wad, + wpB; + 27TJAB(Asz + A,B, + AyBy)’ “]

where A,, and B,, are the m components of the spin angular momentum operators
for nuclei A and B, w, and wp are the precession frequencies (in s™!) of A and B, and
Jap is the scalar-coupling constant (in Hz). It is useful to write /# in the form
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OPERATOR DESCRIPTION OF AB AND ABX SYSTEMS 259

= F,+ T, 2]
where

#o = &(A; + B.) + 2rJap(4:By), [3]
and

#\ = da(A; — B)) + 2wJap(A, B, + A,B)), (4]

where @ = (ws + wp)/2 and dw = (wa — wg)/2. This separation of the Hamiltonian is
useful since
[Zo, #1]1=0 (5]

allows one to express the evolution of the density operator, p, during a period of free
precession as
o(t) = exp(—i#1)p(0)exp(i#t)
= exp(—iZot){exp(—i#  )p(0)exp(i# ) }exp(i# o), [61

and to consider the evolutions under /#, and under #, separately. The evolution of
the spin product operators belonging to coherence levels *1 in the spherical basis (5)
under #, and under /#, is given in Table 1.

The results in Table 1 were derived by the procedure outlined by Slichter (6). As
an illustration, we show how the operator 4., evolves under /#,. Consider the operator,
f(), defined by

J(0) = exp(—i#  DA1exp(i# 1) (7

TABLE 1

Transformation of Coherence Level £1 Operators for AB Spin System

Hit
Ay > A0 (1) + 246B.1ax(%1)
2’11
2441By ——> 24, Boa\(21) + B,ax*)
Zit _
B,————— B, a\(Ft) + 24, Boax*t)
Z\t _
2A4¢By | ————> 2A40B.1a:(F1) + A4 a2(xt)
Kot
Asy——"> A b\(21) + 244, Bobs(£1)
P o
241 Byt 24, Bobi(0) + Aubaf1)
Hot
By ——— B.,b\(zt) + ZAoBtlbz(it)

24,8, _F, 24,B.1bi(£1) + Buiby(=0)
a;(1) = cos(Af) — i(dw/A)sIn(AL), ax(t) = i(wJap/A)sin(AlL)
bi(t) = cos(wJptlexp(—iw?), bo(t) = —i sin(xJapt)exp(—idt)
A = Y@oP + (xJas)
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The time derivative of f(¢) is

Y exp(—i1 DA, 2,Jexp(i? 1)

dt
= iexp(—-if?lt){—éwA“ + TrJAB(onB.H)}CXp(i%;[), {8]
and the second derivative is
d? .
£ = (@ + () = A 91

The solution to differential equation [9] shows that A, transforms under #, according
to

2t )

Ay = Agalt) + 240By axb), {10]
where q,(f) and a,(f) are defined in Table 1. The formulas for the evolution of the
other coherence level +1 product operators were derived in an analogous fashion. The
frequency A defined in Table 1 is the usual frequency variable which arises in the
analysis of the AB spectrum (7). The results in Table 1 are valid only for spin-4 nuclei
since the evaluation of commutators like [24¢ B+, , 4By + A, B,] yields trilinear forms
like A, Aq B, which can be reduced to simple basis operators only when both A and
B have spin-1.

When one considers the effect of # on the operators Ay and By, one obtains a set
of four coupled differential equations involving the operators Ay, By, 4.1 B, and
A_,B,,. Simplification is obtained by forming the differential equations for linear
combinations of these operators, and one ultimately obtains the results in Table 2.
The operators Ay, Bo, 24,1 B_,, and 24_, B, commute with #, so the effects of free
precession on these operators are completely described by their evolution under .#,.
It is interesting to note that the longitudinal magnetizations Ay and B, oscillate at

TABLE 2

Transformation of Coherence Level 0 Operators for AB Spin System

it
A()—l—'> Aorl(t) + Borz(t) + 2A+1B_1r3(t) + 2/}‘,»13.“}'3('—{)
Fyt
By ——> Apry(t) + Bori(t) — 244 B_iri(t) — 24-1Byrs(~)
it
2A.HB_1 —_— Ao’3(t) - Bor3(t) + 2A+1B-1r4(t) + 2A_,B+,r2(t)

24.1B. "ﬁ’ Aors(—1) = Bors(—8) + 24, B_ir() + 24 Boir(—1)
n(®) = {1 + [(5w)?* + (xJas)’cos(2A0)/A?}/2

rot) = (wJap/AP{1 — cos(2AD)}/2

rs(t) = (wJap/A){(Bw/A)[cos(2Ar) ~ 1] — i sin(2A1)}/2

ro(t) = {cos(2Af) + [(zJap) + (bw)*cos(2AN)/A? — 2i(5w/A)sin(2A2)}/2
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frequency 2A (Table 2), while the transverse magnetizations oscillate at frequency A
under #;.

Braunschweiler and Ernst (8) have considered the evolution of the Cartesian basis
product operators for the AB spin system under the spin-spin coupling inter-
action 27J,pA * B. The results in Tables 1 and 2 reduce to their results for the case
dw=w=0.

ABX spin system. For the three-spin ABX system, the free precession Hamiltonian
can be written as

& = wad; + wgB; + wxX; + 27Jap(4.B; + A, B, + A,B))
+ 2nJaxA. X, + 27Jpx B, X, [11]

where A,,, B,,, and X,, are the m- components of the nuclear spin angular momentum
operators; wa, wg, and wx are the precession frequencies of the nuclei A, B, and X
respectively. In Eq. [11], spins A and B are strongly coupled with coupling constant
Jas (Hz), and spins A and B are weakly coupled to spin X with respective coupling
constants J,x and Jgx. In a fashion which is exactly analogous to the AB case, we
separate the spin Hamiltonian in Eq. [11] into

#o=dd, + B) + wx X, + 2nJ(A, + B,)X, + 2wJasA.B;, [12]
and
) = dw(d, — B;) + 2x0J(A; — B)X, + 2nJsp(A By + A,B,), [13]

where & = (wa + wp)/2, J = (Jax + Jax)/2, and 8J = (Jax — Jpx)/2. We again obtain
the simplification in Eq. [6] because #, and /#, commute. As in the AB case, the
evolution of the product operators under #, and under /#, can be derived by the
method of Slichter (6), and the results for spin operators belonging to coherence levels
+1 and —1 are given in Table 2.

It should be noted that appropriate linear combinations of product operators are
used in the analysis in order to obtain uncoupled differential equations. As an example
we derive the result for the evolution of 4., under #,. Consider the operators g.(f)
defined by

8:(t) = exp(—i# 1 1){A+, £ 24, Xo}exp(iZ 1), [14]
with first derivative
dg.(t) . .
___gd:t( ) =i exp(—l%l t)[A_H + 2A+1X0, fllexl)(i’ylt)

= [ exp(—i#  ){—(6w + w8 YA Xo)
+ WJAB(2A0B+1 + 4AoB+1X0)}exp(i/71 t) [15]
and second derivative

d’g.(1)
dr?

= —[(0w + 78J)* + (xJan)lga(t) = ~AZ£u(2). (16]

The solutions to Eq. [16] for g.(¢) and g_(¢) are easily manipulated to show that the
transformation of 4., under #, is given by
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Z\
Asy

A fi) + 244, X0 f5(t) + 240 B f3(1) + 440 B Xo fo(1), [17]

where the functions f;(¢) are defined in Table 3. The formulas for the evolution of the
other coherence level 1 product operators are derived in an analogous fashion. The
frequency variables A, and A_ defined in Table 3 are the standard frequencies which
arise in the analysis of the ABX spectrum (7).

The evolution of X., under #, is much more difficult to derive since one encounters
two sets of six coupled differential equations involving operators X.,, 240X+, 2Bo Xy,
449By X+, 44_ 1B, X+, and 44, B, X.,. The evolution of the operators belonging
to coherence level —1 is given in Table 4. The evolution of operators belonging to
coherence level +1 can be derived from the results in Table 4 using the property

It = (-1, [18]

where 1, is the uth spherical component of spin angular momentum for nucleus L

The description of the evolution of operators for the ABX spin system which belong
to coherence level 0 involves a set of eight coupled differential equations in the operators
Ag, Bo, 2A+lB_1 . 2A_lB+1 . ZA()X(), ZB()X(), 44.,B_ Xo, and 4A_1B+1X0. The solution
of this set of equations gives the evolution of each of these operators under #,, as
shown in Table 5. X; commutes with both %, and .#,, so it is unchanged during free
precession. Similarly, the other operators belonging to coherence level 0 commute
with #,, so one need be concerned only with the effects of 2%, on these operators
during a period of free precession.

It should be noted that the effect of #, in both AB and ABX systems is to generate
periodic transfer of magnetization between the strongly coupled nuclei A and B (4).
For example, the 4-magnetization component 4., is transferred to antiphase B-mag-
netization component 24, B, under #, (see Tables 1 and 3). The z magnetizations
Ao and By of the AB spin system undergo periodic exchange and are involved in
transfer with the zero-quantum “combination” modes 24, B_, and 24, B, ;. Similar
exchanges between the z magnetizations of the AB part of ABX, and transfers to
combination modes, occur in the ABX spin system. Surprisingly, the behavior of the
coherence level —1 operators for the X part of ABX (Table 4) is more complicated
than the behavior of the corresponding operators for the AB part of ABX (Table 3)
since transfer between transverse X magnetization and combination modes 44, B_ X,
and 44_,B,; X, occurs. As expected, the results in Tables 1-5 indicate that free
precession allows interchange between operators in the same coherence level. Changes
in coherence level occur only when RF fields are applied (5, 9, 10).

APPLICATIONS

In this section, we illustrate the utility of the product operator description of strongly
coupled systems discussed above by considering several one- and two-dimensional
NMR experiments. In particular, we consider the AB and ABX spin systems, and
focus our attention on the features in the experiments which can be attributed to the
effects of strong coupling. The applications discussed below have been investigated
using a version of the computer simulation system described earlier (1) which has
been modified to handle the evolution of the +1 coherence level operators of the AB



OPERATOR DESCRIPTION OF AB AND ABX SYSTEMS 263

TABLE 3

Transformation of Coherence Level +1 Operators for AB Part of ABX Spin System

P4
An s A S + 24 Ko 1) + 2A0Ba (2D + AAoBuXofi(2)

.\t
By ——"> B, fi(Ft) + 2By Xo fy(F1) + 240 Bo fit) + 442, BoXo fi(£1)
it
240 X ——> 24, Xo fi(20) + Aur fi(20) + 84uBo Xo fi(£1) + 240B. fil£1)
.\t
2B, Xo——— 2B, Xo fi(Ft) + Buy f(F1) + 4421 BoXofi(21) + 24,1 Bofu(21)
.t
24,,By ———> 24,1 Bofi(21) + 44, BoXofiE1) + Bar fi(21) + 2By Xofix0)
Hit
24611 ——> 240Ba fi(F1) + 44cBu Xo (FO) + Aui fi(20) + 242 X0 fi(£1)
A\t
44, BoXo ———> 44,1 BoXo fi(£1) + 24 Bofi(2t) + 2B Xof(£) + By (1)
H\t
440B. Xo ———> 840B. Xo fi(F1) + 2A6Ba S{F1) + 240 Xo fi(20) + Aer fil0)
Hol
Ay > Ay g1(20) + 244 Bog£1) + 241 Xo08x(£) + 44+, BoXogd(£1)
Hot
By ———> B g\(x1) + 240B.18:(£1) + 2B Xogy(£t) + 4A4oB1 Xog(11)
Kot
24, X ———> 24, Xo81(21) + 44, BoXo8x(El) + A1 g3(21) + 2441 Bo8a(E0)
ot
2B, Xo ——— 2B, Xogi(2f) + 440BuiXogo(£1) + Buiga(2t) + 24oBs1 (1)
zo
24,,By ——> 24, Bogi(£0) + As18:(20) + 44,1 BoXogs(31) + 241, X0gd( 1)
X
24yB,) ——— 24,B.,81(x1) + ByigAFf) + 44¢B, 1 Xogs(£1) + 2B, Xoga(1)
Hot
84,1BoXo —— > 44, BoXof:(£1) + 242 XogA20) + 244, Bog£t) + A18(E1)

&ol
4A40B 11 Xo ——> 440B 11 Xog1(£1) + 2B\ Xo8A£l) + 240B11g:(£t) + Briga(£1)

£ = {c_expliAf) + coexp(—iAyf) + d_exp(iA_t) + diexp(—iA_1)}/4

() = {c_expliAf) + ciexp(—iAyl) — d_exp(iA_t) — diexp(—iA-1)}/4

SO = (/2 {(xJap/As)sin(A L) + (wJap/A-)sin(A-1)}

JdO = (/2){(xJap/As)sin(ALt) — (wJan/A-Ysin(A-D)}

As = V0w = 70JY + (mJap)’, € =1 2% (bw + 7)) Ay, di=1% (b0 — wdJ)/A_

£21(t) = (1/2){cos[x(J + Jap)f] + cos[a(J — Jap)t] jExXp(—iwt)

&) = (—i/{sin[x(J + Jap)] — sin[m(J — Jup)f)}exp(—iar)

gx(0) = (—if2){sin[x(J + Jap)t] + sin[=(J — Jap)]}exp(—iat)

gal) = (1/2){cos{m(J + Jug)t] — cosix(J — Janit]exp(—ir)




TABLE 4
Transformation of Coherence Level —1 Operators for X Part of ABX Spin System

.\t
Xy == X_i5(t) + 40BoX_15(1) + 246X_155(1) — 2BoX-155(6) — 4A B X 154(0)
+ 44 B, 1 X_154(—1)

&\t
440BoX -, —_ X152 + 440BoX_151(1) — 240X 153(0) + 2BoX-1sx(t) + 44, B_ X _ 540
= 44 By X_y5—1)

ot
246X ———> X_,53(t) — 4AoBoX-55(6) + 240X _,55(0) + 2BoX_156(t) + 441 B X151
+ 44 B X_(5o—1)

x
2BoX_, SN ~X_155(1) + 4AoBoX_15oE) + 24X 156(1) + 2BX i55(1) ~ 441 B X 15:(2)
— 44_ By X_i5:(~1)

A\t
4A-HB—X/‘,—l —"L-’ ‘X—lsd(t) + 4AOBOX—IS4(t) + 2AOX_|S7([) - 280X-157([) -+ 4A+|B-1X71Sg(l)

+ 4A4_ B X_156(2)

44_,B, X, -ﬁt——» X_iSa(—1) — 440BoX_15(~1) + 240X_157(—1) — 2BoX_ysr(—1) + 44, B, X _i5(1)
+ 44_ B 1 X_185(—1)
si() = 172 + (4/2)[u-cos(Q2+t) — u.cos(Q_1)}
s:8) = 1/2 — (A/2)[u—cos(Q+t) — u,cos(Q-1)]
53(t) = [i4/(4wd N)][Qsu-sin(Q,1) — Q_u,sin(Q_1)]
$4(0) = [uate_A/ (82T g )} [cOS(Q8) — cOS(Q-8) ~ i(28w/Q)sIn(R41) + #(28w/Q_)sin(Q.1)]
ss(t) = 1/2 — (4/2)fv,cos(Q.t) ~ v_cos(Q-1)]
ss(t) = 1/2 + (A/2)[v.cos(Q.8) — v_cos(Q-1)]
§1(0) = —wJxpA {280[co8s(R41) — coS(Q_1)] ~ iR sin(Q,0) + iQ_sin(Q_1)}
sa(t) = —A{[u, — 2w apflcos(Qs8) — [1- — 2w ap)lcos(2-1)]
+ i[26w/(2Q)NQ-usin(R48) ~ Quusin(Q-N]}
so(t) = 2A(nJapY[cos(Q.1) — cos(Q-1)]
Qo=Ar A, A=1)0 - Q), u, =02 —QrsJP v, = Q2 - Qbw)
X __f’L Xer 120 + 240X 01 jo£) + 2BoX 1 jo(1) + 440BoX.y jo(£8)

z, . .
240K e 2L X 1) + 240Ka1 (1) + 2BoXor (D) + AoBoKen D)
2BoXes 2% s X o) + 240K jo0) + 2K D) + AAoBoXur o 20)

4B — s X, (1) + 240K, JA0) + 2BoX 1 jao£1) + 44BoX 1 ji(1)
Ji(8y = (121 + cos(2xJn)]exp(—iwyt)
Jot) = (—if2)sinQrJexp(—iwxl)
Ja0) = (1/2[~1 + cos(2wJt)exp(—iwxt)

264
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TABLE 5

Transformation of Coherence Level 0 Operators for AB Part of ABX Spin System

Zit
Ag ——> Aoqi(1) + Bodgalt) + 244 B1gx(0) + 24-1Bigs(—1) — ZAOXQ(IA(t) + 2BoXoga(t)
+ 44,1 B 1 Xoqs(t) + 441 B+ 1 Xogs(—1)

Z\t
Bo —— Aogaft) + Bogi(t) — 24.1B-1g5(t) — 24_1B.1gi(—1) + 240Xoau(t) — 2BoXog(t)
— 44 B_ 1 Xogs(f) — 441 B\ Xogs(—1)

it
24,\B_, — > Aogi(f) — Bogs(t) + 24.41B-1gs(f) + 24_1B.11gx(1) + 2A46Xoas(t) — 2BoXogs(t)
+ 44 B_1 XoaAt) + 441 B Xogi()

it
24_ By ——> Aogs(—t) — Bogs(—1) + 24.1B_1g5(t) + 24_,B.igs(—1) + 2A4eXog5(—1)

— 2BXogs(—1) + 444181 Xoqy(t) + 44, B, XogA—1)

&\t
2A4oXo ——>* —Aoga(t) + Bogi(t) + 24.1B-1g5(1) + 24_,B.1gs(—1) + 2A40Xoq:(£) + 2BoXogalt)
+ 44 B_ Xgx(?) + 44 1B Xogs(—1)

it
2BoXo ——> Aogu(t) ~ Bodult) — 2441B_1a5(1) — 24-B11gs(—1) + 240Xoga(t) + 2BoXoqi(2)
— 44, B_ | Xog:(t) — 4A- 1B Xogs(—1)

it
44..B_1 X, — Aogs(?) — Bogs(t) + 24.,B_1g:(8) + 241 B.1q4(t) + 2A40X0q5(t) ~ 2BoXogs(t)
+ 44, B 1 Xoge(t) + 4A-1BriXogA)

44_,B . Xy i’-'L Aogs(—1t) — Bogs(—1) + 24.B_1g4(t) + 24-,B,1g+~1) + 24cXogs(—1)
— 2BoXogs(—1) + 44 B Xoas(t) + 44_1 B Xoge(—1)

() = (1/4){2 + [(dw + w8JY + (xJapYeosLAD)AL + {(bw — wdJP + (rJAn)zcos(ZAkt)]/AZ}

0(1) = [Jap/QADP[1 — cos(2A,1)] + [7Jap/(2AF[1 — cos(2A-1))

g5(0) = [(wan)/(AANN{[(w + 78J)/AJcos(2A,1) — 1] — i sin(2A.,0)}
+ [(wJap)/(4A){{(dw — x8J)/ A][cos(2A-8) — 1] — i sin(2A-1)}

1) = [wJap/(2A)P[cos(2A1) ~ 1] = [mJap/(2A)f[co8(2A 1) — 1]

gs(t) = [(man)/(4A NN {[(Bew + 78TY AL — cos(2A,0)] + i sin(2A,1)}
— [(7Ja)(AAN[(Bw — w8 Y ANt — cos(2A_#)] — i sin(2A_£)}

g6(t) = (1/4){2 cos(2A.1) — 2i[(8w + w8J)/ A, Jsin2A 1) ~ (xJap/A+Y[cOS(2A.1) ~ 11}
+ (1/4){2 cos(2A_1) — 2i[(dw — wOJ)/A_ISIN2A 1) — (xJap/A_Y[cos(2A-1) — 1]}

g(t) = —(1/4){2 cos(2A,1) — 2i[(bw + 70T/ AJSINQA L) — (xJap/As[cos(2A,8) — 1]}
+ (1/4){2 cos(2A_#) — 2i[(bw — w8J)/A-Jsin(2A_t) — (xJap/A_Y[cos(2A-t) — 1]}
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spin system (Table 1), and the AB part of the ABX spin system (Table 3). In all
examples, we have assumed perfect quadrature detection so that observed signals are
associated with operators A_,, B_, and X_, only.

(a) n/2-Acquire. We consider the sequence (7/2),~t applied to an AB spin system
at thermal equilibrium. The evolution of the density operator follows the scheme

2)A, + B,
Ao + Bo (x/2X ). (i/V2)(A-, + B_, + A, + Byy)

Zl
— (i/V2)X o) + Boy) —— (—i/V2){A_i[af(~Dbi(—1) + a—Dbo—1)]
+ Boi[ai()bi(-1) + ax(—0)by(—0)}}.  [19]

The 4., + B., terms produced by the pulse have been ignored since they do not
produce observable signals. The terms involving 24_, By and 24, B_; which develop
from 4., and B_; during the evolution under #, and #, have been omitted from
the final result in Eq. [18] because the observed signal is obtained from the sum of
the coefficients of A..; and B_, only. The acquired signal is proportional to

S(0) = (1 — wJap/A){expli(@ + A + wJap)t] + expli(@ — A — wJag)t]}

+ (1 + wJap/A){expli(@ + A — wJap)t] + expli( — A + wJap)t]} [20]
and the corresponding frequency spectrum consists of lines at frequencies
@+ (A + wJap) with intensity | — wJap/A, and at frequencies & + (A — wJp) withinten-
sity 1 + wJap/A. This is, of course, the “classic” AB spectrum (7) and has been derived
here without any reference to eigenfunctions of the spin Hamiltonian.

For the ABX system, the evolution of the density operator through the (7/2),~
pulse sequence is given by

(7/2)(Ax + B + X))

Ao+ By + X,
(—i/V2XA_, + B_y + X_y + Auy + By + X10)

#l

(—i/V2)(A-, + B, + X))
(VDA { fi(—Dgi(—1) + S(—gx(—1) + H(—DgA—1) + f(—Dgu—1)}
+ (=i V2B { iDgi(—1) + FiDgs(—1) + S(—Dg—1) + fi(~Dgx—D)}

+ (VDX @i + sa(-D)}. [21]

The acquired signal here is just the sum of the coefficients of 4_,, B-,, and X, in the
density operator and is proportional to

S(t) = (1 — mJap/A+)
X {exp(i@ + 7J + Ay + wJap)t] + expli(@ + 7J — A, — wJap)t]}
+ (1 + wJas/A){expli@ + wJ + Ay — wJap)t] + expli(@ + 7] — A+ + 7 Jan)l]}
+ (1 + wJag/A){expli@ — =J + A — mJap)] + expli(@ — #J — A + wJxp)i]}
+ (1 — wJap/A_){expli(@ — nJ + A_ + wJap)] + expl(a@ — 7] — A — wap)]}
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+ (1/2){1 = [(0w)? = (w8 + (wJ )]/ A+ A-)}{explilwx + Ay + A)]
+ expli(wx — Av — A} + (1/2){1 + [bo) ~ (78] + (wJap)')/A+A-)}
X {explilwx + A+ — A_)] + expli(wx — A+ + A)]}
+ {exp[i(wx + 7] + explilwx — 7N)]}. [22]

The corresponding frequency spectrum consists of lines at frequencies @ + xJ
+ (A, + wJag) with intensity 1 — wJas/A., at frequencies @ + nJ + (A, — wJap)
with intensity 1 + wJap/A., at frequencies @ — wJ * (A_ — wJp) with intensity
1 + wJas/A-, at frequencies & — #J = (A_ + wJap) with intensity | — x.J,p/A_, at fre-
quencies wx * (A4 + A_) with intensity {1 — [(w)? — (x6J)? + (xJap)?)/(A+ A2)}/2,
and at frequencies wx + (A, — A_) and wx * wJ with intensities {1 + [(dw)’
— (wdJ)* + (xJap)}/(A+ A-)}/2 and 1, respectively. These frequencies and intensities
agree with those given by Pople, Schneider, and Bernstein (7).

(b) 2D Homonuclear J-resolved experiment. When the pulse sequence (w/2),-
(t,/2)~(m)—(t;/2 + 1) is applied to an AB spin system, the density operator follows
the scheme

(7/2)(Ax + By) any m(Ax + By) #1/2

Ay + By

(i(V2){(A, + B_))cos(mJapt)) + i(24_ Bo + 24¢B_ )sin(wJapt,)}

X {(3w/AY + (wJas/AYcos(At;)}

+ (i/V2){(A-, + B_)sin(zJast)) — i(24_, By + 240 B_)cos(wIapt)}
X {(wJap/A)sin(At;)}

+ (1/V2){(A_, — B_)sin(xJagtr) + i2A_ By — 240 B_ )cos(xJapt1)}
X {(dw/A)mJap/A)[cos(At) — 1]}

Zty . )
——’(I/VE)(A-x + B_1){(dw/A)* cos(wJapti + wJapt2)cOS(ALy)
+ (wJap/A)sin(wJapt; + wJagta)sin(Al; + AL)
+ (WJAB/A)ZCOS(’)I'JABtl + WJABtz)COS(Atl + Atz)}exp(i(?)tz). [23]

The terms containing (wJap/A) in the density operator at time ¢, and at time ¢, + £,
result from strong coupling of A and B. Detailed investigation of the evolution of the
density operator shows that the 4, term in p(0) generates terms in p(¢,/2) which contain
Ay, 244 By, By, and 24, B,,. Each of these terms produce identical contributions
to each of the strong coupling terms in p(z;), and hence in p(¢, + ;). One cannot,
therefore, attribute the strong coupling terms in p(¢, + £,) to one or two particular
terms which arise at intermediate points in the sequence because strong coupling
effects occur in all precession periods.

The acquired signal in the 2D J-resolved experiment on the AB spin system (see
Eq. [23]) gives “normal” peaks at frequencies [w;, w;] = [mJap, @ £ A + 7Jag] and
[—7JaB, ® = A — wJap] With intensity (dw/A)?, and “unexpected” peaks, due to strong
coupling, at frequencies [+(A + wJag), ® £ (A + wJap)] with intensity (rJap/AN—1
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+ wJap/A) and at frequencies [+(A ~ wJap), @ = (A — wJup)] with intensity
(wJap/AX1 + wJan/A). The features in the J-resolved experiment due to strong coupling
agree with the results of Kumar (3), and with experimental observations (11, 12).
The ABX homonuclear spin system gives rise to similar results in the 2D J-resolved
pulse sequence and one obtains the frequencies and intensities given by Kumar (3).
(c) NOESY with zero mixing time. The appearance of additional peaks in 2D NMR
spectra due to strong coupling is not limited to J-resolved experiments. Recently a
study of the effects of strong coupling on NOESY spectra indicated that cross peaks
between spins A and B could arise purely from scalar coupling (13). In order to elucidate
these features, we consider the behavior of AB and ABX spin systems during the pulse
sequence (r/2),~t,~(1/2)—7~(n/2)~t,. We assume that the mixing time r is short
compared to all relaxation times so that no cross-relaxation occurs in this interval;
hence 7 is set to zero and all relaxation is ignored. For the AB spin system, the density
operator during the “zero mixing time” NOESY experiment follows the scheme

2)(4x + By /22X Ay + By
Ao + By (w/2)(4 +BL %tl‘ (7w/2XA4 +B)L

{=(1/2)(4o + Bo)[cos(At;)cos(wJapt1) + (wJap/A)sin(At,)sin(xJapt))]
— (i/2)(Ao — Bo)[(dw/A)sin(At)cos(wJapt1)] fexpliwt,)
(7/2)(Ax + By) 'l

(A1 + B_){(V2/4)[cos(At, + At)cos(mapt;)c0S(TJapL2)]
+ i(V2/4) (I an/ AVISin(At)sin(Ar,)cos(mIapty — 7Jal2)]
+ (iV2/8)(Jap/M)[sin(At; + At)sin(wJasty + wJanls)
+ sin(Af; — Ap)sin(rant, — mIasto)l}explil@t, + @), [24]

where the terms in p(¢}) containing (wJxp/A) and the terms in p(f, + £,) containing
(wJap/A) and (wJag/A)? arise because of strong coupling between nuclei A and B. In
Eq. [24], we have considered only the —1 coherence level terms during the ¢; and #,
periods (“P-type” peaks), and only the z magnetizations in the mixing period. This
latter restriction avoids the complications from zero-quantum combination modes,
which give rise to the so-called “J peaks” in NOESY 2D maps (/4). Experimentally,
this suppression of zero-quantum coherences is achieved by the application of a gradient
pulse at the start of the mixing period, or by stochastic variation of the length of the
mixing time (/4).

The terms in p(t; + t,) (see Eq. [24]) show that, in addition to the expected “diagonal”
peaks at frequencies [w;, w;] = [@ £ (A + wJap), @ = (A + 7w/ap)], [@ £ (A — 7Jap),
@+ (A — 7Jap)), [(@ £ (A + 7Jap), @ £ (A — wJap)], and [@ £ (A — 7Jap), @ £ (A
+ wJap)] which have relative intensities (1 — wJap/A), (I + wJan/A), (6w/A)?, and
(dw/A)?, respectively, A-B cross peaks with frequencies [@ £ (A + #Jap), ® F (A
+ wJap)], and [@ * (A — wJap), @ F (A — wJap)] With relative intensities (w./an/AX—1
+ (wJas/A) and (wJap/AX1 + wJap/A), respectively, appear in the 2D map. These
cross peaks are due entirely to the presence of strong coupling between nuclei A and
B, and will also occur in the usual NOESY experiment with nonzero mixing time.
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The cross peaks which one might expect at frequencies [w + (A + wJap), @ F (A
— wJap)] and [@ + (A — wJap), @ F (A + wJap)] have zero intensity.

The results of a “zero mixing time” NOESY experiment on 2,6-dicarboxynaph-
thalene, an AB spin system, displayed in absolute value mode, and the corresponding
density matrix simulated 2D map (I3) are shown in Fig. 1. The appearance of A-B
cross peaks with frequencies [@ £ (A + 7Jap), ® F (A + 7wJap)] and [@ = (A — 7Jap),
w T (A — wJap)] with opposite phases, but no cross peaks at frequencies [w * (A
+ 7Jan), @ F (A — wJap)] and [@ x (A — wJag), @ F (A + wJap)], agree with the
predictions of the product operator calculation given above. Several features of the
2D maps shown in Fig. 1 warrant comment. First, cross peaks between A and B spins
are observed, despite the fact that the mixing period is much too short for any cross-
relaxation to occur, and that stochastic variation of the mixing time restricts the signal
to those components which are derived from z magnetization during the mixing period.
Second, the multiplet components of the cross peaks in the simulated spectrum vary
in both phase and intensity, in contrast to cross peaks derived from cross-relaxation
which would have the same phase and similar intensities (14). It is proposed, therefore,
that in NOESY data sets with sufficiently high resolution, one may distinguish between
cross peaks arising from strong coupling effects and cross peaks arising from cross-
relaxation by the relative phases of the multiplet components and their relative inten-
sities.

The behavior of the AB part of the ABX spin system during the zero mixing time
NOESY experiment is exactly analogous to the behavior of the AB spin system. One
finds A-B cross peaks at frequencies [® + (A4 + 7Jxp) + 7J, & F (A4 + wJap) + 7],
[@x(Ay = mJap) + 7], 0 F (Ay — wJap) + J), [@ = (A= + Jap) ~ 7J, & F (A_ + wJap)
—~nJ),and [® + (A- — 7Jap) — 7J, & F (A- — wJap) — xJ ] with intensities proportional
0 (mJap/ A X(—1 + wJan/A), (mIas/ A X1 + wJap/AL), (wJap/A-)(—1 + wJap/A_), and
(wJan/A-X1 + wJap/A-), respectively. No cross peaks are predicted between the
AB and X parts of the spectrum. The X part of the 2D map has diagonal peaks at
wy = wy = wx * J/2, wx + (A; ~ A_) and off-diagonal peaks between all of the multiplet
lines. The strong coupling between A and B nuclei produces only small effects on the

FIG. 1. Contour plots of AB region of experimental (a) and simulated (b) NOESY experiment with zero
mixing time on 2,6-dicarboxynaphthalene [see Ref. (13) for simulation parameters].



270 KAY AND MC CLUNG

intensities of some of the peaks, and these effects arise from the exchange of X,
magnetization with the combination modes 44, B, X_, during ¢,.

The (x/2),~7—(n/2), part of the zero mixing time NOESY experiment is a z filter
(15) which has been applied in other sequences. The effects of the z filter on strongly
coupled spin systems described above can be expected in these other experiments too.

(d) “Unexpected” peaks in C-H correlation experiments. In proton-decoupled 2D
DEPT experiments (5, /6) and in conventional 2D DEPT experiments (/6, 17), one
finds unexpected C-H correlation peaks between protons bonded to one carbon atom
with the adjacent carbon atom(s) in addition to the expected “directly bonded” cor-
relations. These unexpected correlation peaks are found to have significant intensity
when the difference in vicinal proton chemical shifts is approximately equal to the
directly bonded 'H-'3C coupling constant, and are believed to arise from strong cou-
pling effects. Although these features are observed in a number of correlation exper-
iments, we shall concentrate on the simplest preparation—evolution sequence
(7/2)B-1,/2~(m)$~1,/2, and study the behavior of the fragment

H(B) H(A)

___I_Zlc___ l3lc_ ,
(X)

an ABX spin system, during this sequence. The pulses which are appended to this
preparation-evolution sequence, in order to obtain heteronuclear correlation, convert
transverse A magnetization to transverse X magnetization. We are therefore interested
in the terms in the density operator containing operator 4_, at the end of the evolution
period, since the final detected X_; magnetization is derived from these terms.

It is useful to recognize that the propagator

(7/2)(Ax + B) (Fo + Z /2 Xy (Fo + Z /2

is equivalent to the propagator
(7/2)Ax + B) H1h/2 Xy

%1 11/2 [(:’(142 + Bz) + 27TJABAZBz]ll

[see Ref. (1)] since this allows separate investigation of the effects of 7, and #,. The
evolution of the density operator through this preparation-evolution sequence is

2)XA, + B, Z1/2 X, Z 1 t4/2
Ao + By (7/2) ), 1h/ R 14/

w(A, + B;) + 2nJspA. B}t
A LAty + 241 BoLatty) — it

A_{La(t)cos(rJapt)e™ + iLy(t))sin(xJapti)e™}, [25]

where
Ly oc [cedi + (mJap)/(As A)]expli(As + A)/2]
+ [crd- — (mJap)* /(A A)]expli(A, — A )/2]
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+ [e-dy — (wJap)*/(A+ A)lexp[—i(A+ — A)y/2]
+ [c-d- + (wJap)?/(A+ A)]exp[—i(A+ + A)t/2], [26]
and
Ly oc wJap(1/A+ + 1/A-){expli(A; + A)/2] — exp[—i(A+ + A-)/2]}
+ wlan(1/A+ — 1/A ){expli(A+ — A)/2] — expl—i(A+ — A)n/2]}.  [27]

In Eq. [25), only the 4_, terms are given in the final density operator, since only these
terms are converted to X_, magnetization and reach the detector in the final stages of
the heteronuclear correlation experiment, The term containing L(¢,) originates from
the A, term in the initial density operator, while the Lg(t,) term originates from By.
The oscillation frequencies of the various terms in La(#,) and Ly(z,) are conveniently
classified as

AL+ AL =w, “average A,”
—(A+ +A) =g “average B,”
and
A, — A_ = wa “average A + B”

since they correspond to averages of resonance frequencies in the AB part of the ABX
spectrum. In the weak coupling limit where éw > 8J, La(t;) is dominated by the term
with frequency wa, and Lg(¢,) by small terms with frequencies @, and @g. As éw
decreases compared to 8J, the magnitudes of the terms in Lg(t,) with frequencies w,
and wp increase, and L,(?;) continues to be dominated by the w, term. Terms in both
La(t,) and Lg(¢)) with average A + B frequencies also grow in magnitude. It is clear
that the term in Lg(¢,) with frequency wg gives rise to the “unexpected” B-X correlation
peak in the 2D heteronuclear correlation map since, after the magnetization transfer
part of the sequence, it will produce a term proportional to

X_lexp(ithz)exp{i[a) - (A+ + A_)/2]t1}sin[1rJABt1]

in the final density operator. This term will produce correlation peaks at [w;, w,]
= [w— (Ay + A)/2 £ wJ\p, ©,]. It may be concluded therefore that the “unexpected”
correlation peaks arise from proton-proton magnetization transfer via strong coupling
during the evolution period.

(e) 2D DQ INADEQUATE experiment. One of the most powerful NMR assignment
techniques available for large organic molecules is the 2D DQ INADEQUATE ex-
periment (18-25) since it is capable of tracing out the molecular framework by cor-
relating the >C chemical shifts of coupled (directly bonded) carbon atoms. Bax and
Freeman (26) have considered the behavior of an AB spin system during the INAD-
EQUATE experiment, and have used element-by-element density matrix calculations
to determine the v dependence of the total double-quantum coherence generated in
the sequence

7/ 2($1)—1—w($2)—T—7/2AP3)—11—37/4s)—t2—Acquire,
but did not deal with the explicit intensities of the various lines within the 2D DQ
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INADEQUATE spectrum. The evolution of the density operator during the INAD-
EQUATE sequence is

7/2(A, + B & A, + B, i
Ao+ By 12( ) T (. )ﬁ T

(244, By + 240 8..)

2 X X,
X {(6w/A) + (wJap/A)cos(2AT)}/(2V2) T2+ B L #h

(—i/4)2A+1 B11){(6w/A)* + (xJan/A)’cos(2A7) }exp[ —2iwn]
Gr/4)4:+ B)  #n

(A= + B-){(1 = wJap/A)sin[(A + mIap)ta] + (1 + wJap/Asin[(A — 7Jag)t2]
= {A-y — B )(dw/A)cos[(A + wJap)tz] — cOS[(A — mJap)ts] }expliwty]
X {[(6w/A)? + (wJan/A)COSQAT)ISINQ7T apT) — (wJap/A)SIN2ATICOS(27 T apT))
X exp[—2iat;1{(1 + V2)i/(16V2)}. [28]

The term in 4_;, + B_, in the final density operator is the detected signal and
corresponds to peaks at [wy, w;] = [2w, @ £ (A + wJap)] with intensity propor-
tional to (1 — wJap/A){(6w/A)? + (wJap/A)cos(A/(2Jar))}, and peaks at [w;, w,]
= [2@0, @ * (A — wJap)] with intensity proportional to (1 + wJap/A){(dw/AY
+ (wJap/A)?cos(A/(2Jp))} for 7 = 1/(4]p). The intensities of the lines are proportional
to the double-quantum coherence intensity given by Bax and Freeman (26), and the
relative intensities in the w, dimension are just those of the conventional AB spectrum.
It should be noted that the “inner” lines of the AB spectrum will have significantly
greater intensity than the “outer” lines, and the “inner” lines should be observable in
the 2D DQ INADEQUATE spectrum under less stringent conditions than those dis-
cussed by Bax and Freeman (26).

CONCLUSIONS

We have shown how the simple product basis operators for AB and ABX systems
evolve during free precession. The detailed examples presented demonstrate the ap-
plicability of the results. Further, but more qualitative, applications involve the ex-
planation of pathways by which unexpected peaks in RELAY (27) and other exper-
iments on strongly coupled systems can arise. We anticipate that these qualitative
descriptions will be most useful to workers in the field.
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