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A simple product operator description of the strongly coupled AB and ABX spin systems 
is developed. The utility of this description in the investigation of the effects of strong 
coupling is illustrated in a number of examples. Q 1988 Amdemtc km Inc. 

INTRODUCTION 

The product operator representation of the density operator devised by Ssfensen 
et al. (1) and by Packer and Wright (2) has revolutionized the way in which the 
evolution of weakly coupled spin systems in modern NMR experiments is described. 
The product operator description is so much more compact and comprehensive than 
the detailed element-by-element density matrix description that even the most complex 
2D NMR experiments can be described with ease. Motivated by the success of the 
product operator descriptions of weakly coupled spin systems (1, 2), we have inves- 
tigated product operator descriptions for the AB and ABX strongly coupIed spin 
systems. Kumar et al. (3, 4) have investigated the behavior of these spin systems 
during various spin-echo and multiple-quantum coherence experiments using 
element-by-element density matrix calculations, and have shown the analysis to be 
very complicated. 

In this paper, we investigate the behavior of the simple product basis operators 
(developed for weakly coupled spin systems) under the influence of Zeeman and strong 
scalar coupling. Some simple examples are present to deinonstrate the utility of the 
product operator description in strongly coupled systems. 

THEORY 

AB spin system. For a strongly coupled two-spin system., the spin Hamiltonian GY 
(in s-l) in the absence of RF fields is 

3?’ = WAA= + WBB= + ~~FJ.&A~B~ + AxBx + AyBy), (11 
where A, and B, are the m components of the spin angular momentum operators 
for nuclei A and B, WA and wa are the precession frequencies (in s-l) of A and B, and 
JAB is the scalar-coupling constant (in Hz). It is useful to write Z?+ in the form 
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OPERATOR DESCRIPTION OF AB AND ABX SYSTEMS 259 

where 

and 
A?“0 = ;;(A, + B,) + 27rJ*B(AzBz), [31 

2, = &d(A, - B,) + 27rJ*e(L4,& + ‘4&J, 141 

where 0 = (oA + w&2 and 60 = (o A - wB)/2. This separation of the Hamiltonian is 
useful since 

PO, &“I1 = 0 [51 

allows one to express the evolution of the density operator, p, during a period of free 
precession as 

p(t) = exp( -i&Pt)p(O)exp( iZt) 

= exp(-i&Pot)(exp(-iZ, t)p(O)exp(iZ, t)}exp(iP& WI 

and to consider the evolutions under 20 and under 2, separately. The evolution of 
the spin product operators belonging to coherence levels + 1 in the spherical basis (5) 
under X0 and under XI is given in Table 1. 

The results in Table 1 were derived by the procedure outlined by Slichter (6). As 
an illustration, we show how the operator A, 1 evolves under XI. Consider the operator, 
f(t), defined by 

f(t) = exp(-iZl t)A+lexp(iSYl t). [71 

TABLE 1 

Transformation of Coherence Level f 1 Operators for AB Spin System 

A 
zl’lt 

2, -A,la,(+t) + ~o&,a2(+t) 

2A*,Bo- 2A*,&a(+t) + B*1a2(+t) 

B*1- B*,a,(+t) + 24*,m2(+t) 

A zot 
+I - A,&,(ft) + %,Bob(*t) 

2A,,Bo- 2A,,Boh(+t) + A&kt) 

E*, -2% B*,b,(M) + 2&B*,b2(-+t) 

2A&?*, --% 2AoB*,b,(+_f) + B*,b*(+t) 

a,(t) = co&It) - i(&w/A)sin(At), a2(t) = i(dA8/A)sin(At) 

b,(f) = cos(d&exp(-i&t), b,(t) = -i sin(rJ,&exp(-id) 

A = (60)2 + (d&’ 
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The time derivative off(t) is 

and the second derivative is 

d2f - = -{(sw)2 + (d*,)'}f= -liy 
dt2 

The solution to differential equation [9] shows that A+1 transforms under Z’, according 
to 

21t 
A --* +1 A+I a&) + UoB+, a&), ilO 

where al(t) and a&) are defined in Table 1. The formulas for the evolution of the 
other coherence level + 1 product operators were derived in an analogous fashion. The 
frequency A defined in Table 1 is the usual frequency variable which arir+es in the 
analysis of the AB spectrum (7). The results in Table 1 are valid only for spin-h nuclei 
since the evaluation of commutators like [240B+~, A,B, + A,,Byl yields trihnear forms 
like A,, A0 B. which can be reduced to simple basis operators only when both A and 
B have spin-b. 

When one considers the effect of 3, on the operators A0 and Bo, one obtains a set 
of four coupled differential equations involving the operators Ao, Bo, A+ I B-I, and 
L1 B+, . Simplification is obtained by forming the differential equations for linear 
combinations of these operators, and one ultimately obtains the results in Table 2. 
The operators Ao, Bo, 24+, Bml, and 2L1 B+, commute with Ro, so the e&cts of free 
precession on these operators are completely described by their evolution under ZI. 
It is interesting to note that the longitudinal magnetizations A0 and BO oscillate at 

TABLE 2 

Transformation of Coherence Level 0 Operators for AB Spin System 

Ao- AOrl(t) + B&t) + 2A+&,r3(t) + 2A’-,B+,r3(-t) 

h-----t Ad(t) + &r,(t) - 2A+dU3(t) - 2A-J+lr3(-t) 

2A+,B-, -A&t) - &q(t) + 2A+&.lr4(t) + 2A-IB+lr2(f) 

&“lt 2&B+, - A&-t) - B&-t) + 2A+&,r2(t) t 2LIB+,r4(-t) 

r,(t) = { 1 + [(au)* + (IrJ~~)‘cos(2At)]/A2}/2 

r*(t) = (dJA)‘{ 1 - cos(2At)}/2 

r3(t) = (d&A){(6w/A)[cos(2Af) - 11 - i sin(2At)}/2 

r4(t) = {cos(2At) + [(d&’ + (~w)~c~s(~A~)I/A~ - 2dWA)sjd2A0}/2 
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frequency 2h (Table 2) while the transverse magnetizations oscillate at frequency A 
under Z, . 

Braunschweiler and Ernst (8) have considered the evolution of the Cartesian basis 
product operators for the AB spin system under the spin-spin coupling inter- 
action 2rJABA. B. The results in Tables 1 and 2 reduce to their results for the case 
662 = 0 = 0. 

ABX spin system. For the three-spin ABX system, the free precession Hamiltonian 
can be written as 

2i? = uAAz + uBBz + wxX, + 2rJ,&A,B, + A,B, + A,,B,,) 

+ 2?rJAxA,Xz + 2?rJBxB,X,, [ 1 I] 

where A,, B,, and X, are the m- components of the nuclear spin angular momentum 
operators; WA, tin, and wx are the precession frequencies of the nuclei A, B, and X 
respectively. In Eq. [ 111, spins A and B are strongly coupled with coupling constant 
JAB (Hz), and spins A and B are weakly coupled to spin X with respective coupling 
constants JAx and JBX. In a fashion which is exactly analogous to the AB case, we 
separate the spin Hamiltonian in Eq. [ 1 l] into 

and 
&“o = ij(A, + B,) + wxXz + 273(A, + B,)X, + ~TJ,BA,B,, 1121 

&p, = 6w(A, - Bz) + 2?rSJ(A, - B,)Xz + 2?rJ&A,Bx f A,B,,), iI31 

where w = (OA + &&)/2, f = (JAx + &x)/2, and 6J = (JAx - J&/2. We again obtain 
the simplification in Eq. [6] because &“o and &“i commute. As in the AB case, the 
evolution of the product operators under ZO and under R’, can be derived by the 
method of Slichter (6), and the results for spin operators belonging to coherence levels 
+ 1 and - 1 are given in Table 2. 

It should be noted that appropriate linear combinations of product operators are 
used in the analysis in order to obtain uncoupled differential equations. As an example 
we derive the result for the evolution of A+, under &“i . Consider the operators g,(t) 
defined by 

g*(t) = exp(-i&“i t){A+, + 2A+1 Xo)exp(zZl t), 

with first derivative 
1141 

&(O - = i exp(-iR’l t)[A+, + 2A+lXo, Z’i]exp(iZ, t) 
dt 

= i exp(-iZ?‘, t){ -(6w + T~J)(A+~ X0) 

+ ~FJAB(~AoB+I f 4AoB+IX~))exM~lt) iI51 

and second derivative 

d*g, (0 - = -[(6U I? T&J)* + (?rJ,+B)*]g*(t) = -h:g,(t). 
dt* 

The solutions to Eq. [ 161 for g+(t) and g-(t) are easily manipulated to show that the 
transformation of A+, under Z’i is given by 
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A 
&“I 

+I - A+l.fXO + ~+,xohM + UoB+,hO) + 4AoB+,Xohtf)r [I71 
where the functions J(t) are defined in Table 3. The formulas for the evolution of the 
other coherence level +l product operators are derived in an analogous fashion. The 
frequency variables A+ and A- defined in Table 3 are the standard frequencies which 
arise in the analysis of the ABX spectrum (7). 

The evolution of X,, under 2, is much more difficult to derive since one encounters 
two sets of six coupled differential equations involving operators X,, , 2AoX,, , 2BoX,, ( 
4A&X,,,4A-,B+,X,,,and4A+,B-,&,. Theevolutionoftheoperatorsbelonging 
to coherence level -1 is given in Table 4. The evolution of operators belonging to 
coherence level + 1 can be derived from the results in Table 4 using the property 

z; = (-l)“Z-,, 1181 
where Z, is the pth spherical component of spin angular momentum for nucleus I. 

The description of the evolution of operators for the ABX spin system which belong 
to coherence level 0 involves a set of eight coupled difkential equations in the operators 
Ao,Bo,2A+,B~,,2A~,B+,,2AoXo,2BoXo,4A+,B~,Xo,and4A~,B+,Xo.The~~utioa 
of this set of equations gives the evolution of each of these operators under 2,) as 
shown in Table 5. X0 commutes with both z. and SY,, so it is unchanged during free 
precession. Similarly, the other operators belonging to coherence level 0 commute 
with x0, so one need be concerned only with the effects of &“, on these operators 
during a period of free precession. 

It should be noted that the effect of S?, in both AB and ,4BX systems is to generate 
periodic transfer of magnetization between the strongly coupled nuclei A and B (4). 
For example, the A-magnetization component A +, is transferred to antiphase Smag- 
netization component 2A0B+, under 2, (see Tables 1 and 3). The z magnetizations 
A0 and B. of the AB spin system undergo periodic exchange and are involved in 
transfer with the zeroquantum “combination” modes 2A+, B- , and 24-1 B+ , . Similar 
exchanges between the z magnetizations of the AB part of ABX, and transfers to 
combination modes, occur in the ABX spin system. Surprisingly, the behavior of the 
coherence level - 1 operators for the X part of ABX (Table 4) is more complicated 
than the behavior of the corresponding operators for the AB part of ABX (Table 3) 
since transfer between transverse X magnetization and combination modes 4A,, Z3- I X.. I 
and 4A-, B+, X-, occurs. As expected, the results in Tables l-5 indicate that free 
precession allows interchange between operators in the same coherence level. Changes 
in coherence level occur only when RF fields are applied (5, 9, 10). 

APPLICATIONS 

In this section, we illustrate the utility of the product operator description of strongly 
coupled systems discussed above by considering several one- and two-dimensional 
NMR experiments. In particular, we consider the AB and ABX spin systems, and 
focus our attention on the features in the experiments which can be attributed to the 
effects of strong coupling. The applications discussed below have been investigated 
using a version of the computer simulation system described earlier (1) which has 
been modified to handle the evolution of the f. 1 coherence level operators of the AB 
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TABLE 3 

Transformation of Coherence Level k I Operators for AB Part of ABX Spin System 

A zlt *, - A&(+t) + 2A,,Xo&t) + 2&B,,h(+t) + 4AOB*,Xoh(+t) 

2&,X0- 2B,,Xofi(+t) + B&(+t) + 4A,,BJoj(+t) + 2A*,Boh(+t) 

u,,Bo --f% 2A+,Bofi(+1) + 4A,,B&oM*t) + B&W) + 2B,,Xo.hW) 

2~&, -% Za,,B,,fi(+t) + 4AoBB,,Xof2(+t) + A&(+2) + 2A,,Xoh(+t) 

xd 4A&Jo - 4A,,&Xofi(+-t) + %,Bof2(+t) + 2&,Xoht+t) + hht*f) 

%I’ 4Ad% ,X0 - 4A&,Xofi(Tt) + 2AoB,&Tf) + 2A,,Xo&kf) + A&(+1) 

A pot *, - A*,g,(+t) + 2A,,Bogz(+t) + 2A,,Xog@t) + 4A,,BoXo&(+t) 

B xot +I - B,,g,(+t) + U,&,&r) + ZBdogd+O + %&,Xogst+t) 

Xd 
2&x0 - ZPJog,(+t) + 4A,,B&gz(+t) + A,lgW) + 2Ae,Bog.+(+t) 

2&,X0 3 ZB,,Xog,(+t) + 4AoB,,Xogz(rt) + B,,g&) + 24&g&t) 

&“ot 2A,,B,, - U*,Bog,(kt) + A+&+t) + 4A*,BoXog&) + 2A,,Xo&(+t) 

20*1 
pd - Uo&,g,(kt) + B,dkt) + 4AoB*,Xog,(+t) + 2B,,Xog&) 

zot 
4&1BoXo - 4A,,B&ogl(ft) + 2A,,Xogz(*-t) + 2A,,Bog&t) + A,lg,(-+t) 

4AoB,,Xo z 4AoBB,,Xog,(+t) + 2B*,Xog&t) + 2AoB,,g&) + Bag&t) 

f;(t) = {c-exp(iA+t) + c+exp(-ih+t) + d-exp(iA-t) + d+exp(-ih-t)}/4 

fi(t) = {c-exp(iA+t) + c+exp(-ih,?) - dexp(iA-t) - d+exp(-iA-t)}/4 

h(t) = (i/2){(d&A+)sin(A+r) + (dAdA..)sin(A-t)} 

j,(t) = (i/2){(d&A,)sin(A+t) - (rJ,dA-)sin(A-t)} 

A* = @%.,I + r6fi2 + (d&‘, c, = 1 + (60 + z&J)/A+, d+ = 1 + (bo - *W/A- 

g,(z) = (1/2){cos[47 + J.&t] + cos[lr(J - Jd]}exd-Et) 

g2(t) = (-i/t){sin[+7 + J&t] - sin[?r(J - Jdt]}exp(-iWt) 

g3(t) = (+/2){sin[*(J + J&t] + sin[lr(J - Jd]}exp(-Gt) 

g4(t) = (1/2){cos[d + J&t] - COS[T(~ - Jd]}exd-iii4 



TABLE 4 
Transformation of Coherence Level - 1 Operators for X Part of ABX Spin System 

&“d x-, - X-,&(t) + 4Ao&&,S&) + 2&&S&) - 2&&&(t) - ~A+,B-,X-IS&) 

+ 4A-,B+,X-,s,(-t) 

z,t 4A&?L - x-,s2(t) + 4AoB&s,(t) - 2‘4&,s,(t) + ZB&,a(t) + 4A+,B-,~Y~,S&) 

- 4A-,B+,X-,3,(-t) 

&“d 
2&x-, - X-,s&) - 4A&X+s3(t) + 2A&-,g(t) + 2&X&(t) + 4A+,E-,X-IS,(t) 

t 4A.+&,X-,S,(-f) 

Ed 2&X-, - -X-&(t) + 4A&&s3(t) + 2Ao.xIS&) t ZB&,ss(t) - 4A+,B.,X-,n(t) 

- 4A-,B+,X-,S,(-t) 

&“,I (IA+&,X-, - - X-,&,(t) + 4A,&K,s&) + 2Ar,X-,s#) - 2B&,s,(t) + 4A+,B-,X-&t) 

t 4A-,B+,X-,s&) 

4A-,B+,X-, &“I’ - X-&-t) - 4A&&,s,(-t) t U&,$,(-t) - 2&,.&s,(-t) + 4A+,B-,Xm,sg(r) 

t 4A-,B+1X-,ss(-t) 

s,(t) = l/2 t (A/Z)[u-cos(O+t) - u+cos(Q-t)] 

s*(t) = l/2 - (A/2)[uuos(Q+t) - u+cos(O-t)] 

s3(t) = [iA/(4dJ)][Q+u-sin(Q+t) - Q-u+sin(Q-t)] 

se(t) = [u+u4/(8*2J,,aJ)][cos(Q,t) - co@t) - i(24w/Q+)sin(W) t i(26a/Q-)sin(Q-t)] 

s5(t) = l/2 - (A/2)[u+cos(Q+t) - u-cos(Q-t)] 

&(f) = l/2 t (A/2)[u+cos(n+t) - u-cos(Q-t)] 

s,(t) = -d~~{Zfh[cos(R+t) - cos@-t)] - iQ,sin(Q+t) + in-sin(U)} 

s*(t) = -A{ [u, - 2(d&*]cos(Q+t) - [u- - 2(dd*]cos(Q-t)] 

t i[2bw/(n+n-)][n-u+sin(n+t) - R+u-sin(k 

s&) = 2A(rJ,e)*[cos(cl+t) - cos(Q-?)I 

Q, = A+ rt A-, A = l/(@ - a:), u* = Q: - (27r6.Q2, 0, = n: - (2&d)* 

x*, - Rd X,,jd*t) f 2A&,j2W) + 2Bd%&(*t) + 4A&kh(+t) 

Rd 2A&, - XpljzOt) + 2AoX,,j,(_+t) + 2BdLj3((+t) + 4A&Lh(+t) 

2B&, 2 X,, j&t) + 2A&, j3(+t) + 2B&, j,(kt) + 4A&&jd+t) 

4Ad3oL - pd X,, j&) t 2AJ,, j2(kt) t 2BoX,, j,(at) + 4A&X+, j,(kt) 

j,(t) = (1/2)[ 1 + co$27Jt)]exp(-io.& 

jz(t) = (-i/2)sin(2dt)exp(-iw&) 

j,(t) = (1/2)[- 1 + cos(27&)]exp(-iw$) 

264 
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TABLE 5 

Transformation of Coherence Level 0 Operators for AB Part of ABX Spin System 

A0 2 Aoq,(t) + B&(t) + 2A+,B-,q,(t) + 2A-,B+,q,(-t) - 2Aohdt) + 2Bo.Gh(t) 

+ 4.4+&&45(t) + 4A-,B+&5(-t) 

B,, -f% A,q&) + B&t) - 2A+,B-,q,(t) - 2kB+,qd-t) + %2&4(t) - 2&&%0) 

- 4A+,B&q5(t) - 4A-,B+,&qS(-t) 

bt+,B-, a A&(t) - &@(t) + ~+&,q6(t) + ~-@+,G’2(t) + ho&% - %&&) 

+ 4A+,B-,&a(t) + 4A-,B+&q,(t) 

xl’lt 
ZQ-$+I - A&-t) - B&-f) + 2A+,B-lqz(t) + u-,B+,qS(-t) + ~d&(-t) 

- 2B&gr(-t) + 4A+,B-,Xoq4(t) + 4A-,B+,&h(-t) 

&“d 2A&l - -AC&(f) + B&(1) + 2A+,B-145(t) + u-,B+,q5(-f) + 2AoXodt) f 2BoJa~(t) 

+ 4A+,B-&o&t) + 4&B+&3(-0 

Z&Jo 2 A&t) - &q.,(t) - D+,B-,df) - 2&B+,qs(-O + W&W) + 2b&dO 

- 4A+,B-Jo&) - 4A.-,~+&q3k-~) 

z’,t 4A+,B-,X0 - Aoqs(t) - Boqs(t) + 2A+,B-m(t) + ZQ-,B+,q,(t) + Udo43(t) - 2BoXoqdt) 

+ 4A+,~-&df) + 4A-,B+,&q&) 

xFt 4A-,B+,Xo - Aoqs(-t) - Boqs(-t) + 2A+,B-,q&) + 2A-IB+a(-t) + 2Ao&qd-t) 

- 2Bdoq3(-t) f 4A+&xOq2(t) + 4A-IB+L&d6(-t) 

q,(t) = (1/4){2 + [(6w + x63)* + (d~~)*cos(2A+t)]/n: + [@w - nbJ)* + (&,)*cos(2Lt)]/A?} 

q*(t) = [d,J(2A+)]*[ 1 - cos(2A+t)] + [d&(2A-)I*[ 1 - cos(2A-t)] 

b(t) = [(dd(4A+)]{ ((6~ + *aJ)/A+][cos(2A+t) - l] - i sin(2A+t)} 

+ [(7rJ&/(4A-)]{[(&I - mV)/A-][cos(2A..t) - l] - i sin(2A-t)} 

q&) = [dd(2A+)]*[cos(2A+t) - l] - [?rJ*~/(2A-)]*[~os(2A-t) - 11 

45(t) = [(nJ.d(4A+)]([(6w + *W/A+][l - cos(2A+t)] + i %2A+t)} 

- [(d,&4A-)]{ [(au - ?rU)/A-][ 1 - cos@A-t)] - i sin(2A-t)} 

q&) = (l/4)(2 cos(2A+t) - 2i[(& + dJ)/A+]sin(2A+t) - (dAB/A+)*[cos(2A+t) - l]} 

+ (1/4){2 cos(2A-t) - 2i[(6w - rbJ)/A-]sin(2A-t) - (d&A&os(2A.~) - I]} 

q,(t) = -(l/4)12 cos(2A+t) - 2i[(h + dJ)/A+]sin(2A+t) - (dAB/A+)*[cos(2A+t) - I]} 

+ (l/4){ 2 cos(2A-t) - 2i[(6o - dJ)/A-]sin(2A-t) - (d&A-)*[cos(2A-t) - l]} 
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spin system (Table l), and the AB part of the ABX spin system (Table 3). In all 
examples, we have assumed perfect quadrature detection so that observed signals are 
associated with operators A-, , B-, , and X-i only. 

(a) r/2-Acquire. We consider the sequence (n/2),-t applied to an AB spin system 
at thermal equilibrium. The evolution of the density operator follows the scheme 

A + B (dW4, + &I 
0 0 l - (i/fi)(A-I + B-I + A+, + B,,) 

- (i/fi)(A-, + B-,) &“t - (-i/fi){A-,[a,(--t&(-t) + a&-t&(-t)] 

+ B-l[adOh(--0 + ad-WA-t)l). 1191 

The A+, + B+l terms produced by the pulse have been ignored since they do not 
produce observable signals. The terms involving 24-, B. and zPoB1 which develop 
from Am1 and B-* during the evolution under R. and x’* have been omitted fiom 
the final result in Eq. [ 181 because the observed signal is obtained from the sum of 
the coefficients of Awl and Be1 only. The acquired signal is proportional to 

S(t) = (1 - rJ&A){exp[i(G + A + 9rJAa)t] -t exp[i(G - A. - .IrJ&t]} 

+ (1 + rJ&A){exp[i(ij + A - ?rJ&t] + exp[i(ij - A + rJ&t]) [20] 
and the corresponding frequency spectrum consists of lines at frequencies 
Li +- (A -t xJAe) with intensity 1 - rrJ&A, and at frequencies ij k (A - ~FJAB) with inten- 
sity 1 + ?rJ&A. This is, of course, the “classic” AB spectrum (7) and has been derived 
here without any reference to eigenfunctions of the spin Hamiltonian. 

For the ABX system, the evolution of the density operator through the (r/2),-t 
pulse sequence is given by 

A0 + B. + X0 
(7&%4x + Bx + &I * 

(-i/lb)(A-l + B-, + Xl + A+, + B+, + X+,) 

(-&)(A-, + B-, + X-,) --% 

O/~k{fi(-tM--0 +h(-M-t) +h(-tlg2(-0 +f4(-tlg4(-0) 
+ W~P-dfi(tlgl(-t) +hWg3C--t) +h(-flg4(-4 +.h(-tlg2(-t)} 

+ (-i/ll2)x-,{s,(t~i,(-t) + s2UM--0). [211 
The acquired signal here is just the sum of the coefficients of A-, , B- ,, and Kl in the 
density operator and is proportional to 

S(t) = (1 - ~Jm/A+) 
X {exp[i(G + ?rJ + A+ + rJAB)t] + exp[i(G + 7rJ - A+ -- ?TJ,&]) 

+ (1 -f ?rJ,&A+){exp[i(G + ?rJ + A+ - rJ&t] + exp[i(G + rJ-- A+ + rJAB)t]j 

+ (1 + zJ.&A-){exp[i(ij - 7rJ+ A- - rJd] + exp[i(o - aJ - A- + ~Jdl I 
+ (1 - 7FJAB/A-){exp[i(i;, - 7rJ+ A- + rJ&t] + exp[(Gm - TJ - A- - rJAB)t]) 



OPERATOR DESCRIPTION OF AB AND ABX SYSTEMS 267 

+ (l/2){ 1 - [(SW)~ - (xSJ)~ + (~JAB)2]/A+A-)}{exp[i(wx + A+ + A-H] 

+ exp[i(wx - A+ - A&]) + (l/2){ 1 + [(SW)~ - (TSJ)~ + (?~JAB)~I/A+A-)} 

x {exp[i(wx + A+ - A-)t] + exp[i(ox - A+ + A-)t]} 

+ {exp[i(ox + aJ))t] + exp[i(wx - ?rJ)t]}. [22] 

The corresponding frequency spectrum consists of lines at frequencies W + ?TJ 
+ (A+ + ?TJ& with intensity 1 - ?TJ,&A+, at frequencies 3 + ~1 k (A+ - TJAB) 
with intensity 1 + 7rJAB/A+, at frequencies W - ~TJ + (A- - aJ,& with intensity 
1 -k uJ&A-, at frequencies G - ?rjf (A- + TJ& with intensity 1 - rJ.&A-, at fre- 
quencies wx f (A+ + A-) with intensity { 1 - [(SW)~ - (TSJ)~ + (7rJ&‘]/(A+A-))/2, 
and at frequencies ox f (A+ - A-) and wx +. ?rJ with intensities { 1 + [(SW)~ 
- (TSJ)~ + (rrJ,&‘]/(A+ A-))/2 and 1, respectively. These frequencies and intensities 
agree with those given by Pople, Schneider, and Bernstein (7). 

(b) 20 Homonuclear J-resolved experiment. When the pulse sequence (7r/2), 
(t,/2)-(+(t,/2 + t2) is applied to an AB spin system, the density operator follows 
the scheme 

A + B (7064x+&) &“t,/2 *(Ax + &I &“t1/2 
0 0 l * 

(&‘){(A-r + lK1)cos(7rJABtl) + i(2LIBo + 2&B-,)sin(?rJ,&,)} 

X {(SW/A)~ + (xJ,&A)2cos(At,)} 

+ (i/fi){(Ll + B-t)sin(7rJ,&,) - i(2LIB~ + 2A&1)cos(~JABtl)} 

X {(?rJdNsiWtd) 
+ (l/fi){(A-, - B-l)sin(rrJABtl) + i(2kI& - 2&,KI)cos(?rJABtl)} 

X {(sw/A)(?rJ,,/A)[cos(Iltl) - 111 
&“t2 

-(i/l&l-l + &){(SW/A)~ cos(rJ,&, + ~J&2)cos(At2) 

+ (~JAB/A)sin(~JABtl + ?rJAr&)sin(AtI + At,) 

+ (n;l&A)2cos(?rJ,+,t, + ?rJ,&&os(At, + At2))exp(itit2). [23] 
The terms containing (?rJAdA) in the density operator at time t, and at time t, + t2 

result from strong coupling of A and B. Detailed investigation of the evolution of the 
density operator shows that the A0 term in p(O) generates terms in p&/2) which contain 
A,, , U,, Bo, B,, , and 2&,B+, . Each of these terms produce identical contributions 
to each of the strong coupling terms in p(t,), and hence in p(t, + t2). One cannot, 
therefore, attribute the strong coupling terms in p(tl + t2) to one or two particular 
terms which arise at intermediate points in the sequence because strong coupling 
effects occur in all precession periods. 

The acquired signal in the 2D J-resolved experiment on the AB spin system (see 
Eq. [23]) gives “normal” peaks at frequencies [w,, w2] = [rJAB, W + A + 7rJAB] and 
[-?TJ*B, G +_ A - ?TJAB] with intensity (~w/A)~, and “unexpected” peaks, due to strong 
coupling, at frequencies [&(A + ?TJ&, 3 f (A + 7rJAB)] with intensity (?rJ&A)(-1 
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+ ?rJ&A) and at frequencies [*(A - rJAB), ii ix (A - rJ-)J with intensity 
(rJ,rJA)( 1 + ?rJdA). The features in the J-resolved experiment due to strong coupling 
agree with the results of Kumar (3), and with experimental observations (II, 12). 

The ABX homonuclear spin system gives rise to similar results in the 2D J-resolved 
pulse sequence and one obtains the frequencies and intensities given by Kumar (3). 

(c) NOESY with zero mixing time. The appearance of additional peaks in 2D WhYlR 
spectra due to strong coupling is not limited to J-resolved experiments. Recently a 
study of the effects of strong coupling on NOESY spectra indicated that cross peaks 
between spins A and B could arise purely from scalar coupling (13). In order to elucidate 
these features, we consider the behavior of AB and ABX spin systems during the pulse 
sequence (?r/2)X-tl-(?r/2)rr-(?r/2)X-tZ. We assume that the mixing time 7 is short 
compared to all relaxation times so that no cross-relaxation occurs in this interval; 
hence r is set to zero and all relaxation is ignored. For the AB spin system, the density 
operator during the “zero mixing time” NOESY experiment follows the scheme 

A + * (dw4.x + Bx) &“t1 (7GN4x + BJ 
0 0 t * 

{--(U%~O + &)bs(Ah)COS(~~,.dd + (n;ldA)sin(At&in(?rJ,,t,)l 

- (i/2)(Ao - B&~w/A)sin(Atl)cosol)eXP(i;;t~) 

(3+X4, + &I zF”t2 
. . 

(ApI + B-l){(ifi/4)[cos(Atl + At2~o~n;lABt,~o~~J*B,~2)] 

+ i(fi/4)(~JAB/A)2[sin(At~)sin(Atz)cos(xJ,&~ - rJd2)] 

+ (ifi/8)(n;l,B/A)[sin(At, + At2)sin(xJ,.+xt, + rJ,d2) 

+ sin(At, - At2)sin(7rJ&, - ?rJ&Z)])exp[i(Lit, + &)I, [24] 

where the terms in p(t:) containing (?rJ,$A) and the terms in p(tl + tz) containing 
(?rJ&A) and (KJ,&A)~ arise because of strong coupling between nuclei A and B. In 
Eq. [24], we have considered only the - 1 coherence level terms during the tg and t2 

periods (“P-type” peaks), and only the z magnetizations in the mixing period. This 
latter restriction avoids the complications from zeroquantum combination modes, 
which give rise to the so-called “J peaks” in NOESY 2D maps (14). Experimentally, 
this suppression of zeroquantum coherences is achieved by the application ofa 
pulse at the start of the mixing period, or by stochastic variation of the length of the 
mixing time (14). 

The terms in p(t, -t t2) (see Eq. [24]) show that, in addition to the expected “diagonal’ 
peaks at frequencies [q, 4 = [3 + (A + ?FJAB), i j + (A + ~JAB)], 1; t- (A - ~&B), 
W + (A - TJAB)], [(Z + (A + TJ&, G f (A - ‘IFJAB)], and [W +- (A - ?TJAB), G + (A 
f TJ&] which have relative intensities (1 - ‘IrJAdA), (1 + aJ,&A), (~u/A)~, and 
(SW/A)~, respectively, A-B cross peaks with frequencies [W + (A + n;lAB), ij T (A 
+ TJAB)], and [G f (A - TJAB), Lj r (A - n;l&] with relative intensities (~J&h)(--l 
+ (rJAs/A) and (rJAn/A)( 1 + rJ&A), respectively, appear in the 2D map. These 
cross peaks are due entirely to the presence of strong coupling between nuclei A and 
B, and will also occur in the usual NOESY experiment with nonzero mixing time. 
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The cross peaks which one might expect at frequencies [W + (A + ~FJ&, W T (A 
- xJ,&] and [W & (A - ‘IFJ,&, W T (A + ?TJ,&] have zero intensity. 

The results of a “zero mixing time” NOESY experiment on 2,6-dicarboxynaph- 
thalene, an AB spin system, displayed in absolute value mode, and the corresponding 
density matrix simulated 2D map (13) are shown in Fig. 1. The appearance of A-B 
cross peaks with frequencies [W + (A + rJ.&, G T (A + rJ&] and [W f (A - aJAn), 
W T (A - ~cJ&] with opposite phases, but no cross peaks at frequencies [G -+ (A 
+ ?TJ&, L;, T (A - ?TJ,&] and [3 f (A - ?rJ AB , ) 0 r (A + ?TJ&], agree with the 
predictions of the product operator calculation given above. Several features of the 
2D maps shown in Fig. 1 warrant comment. First, cross peaks between A and B spins 
are observed, despite the fact that the mixing period is much too short for any cross- 
relaxation to occur, and that stochastic variation of the mixing time restricts the signal 
to those components which are derived from z magnetization during the mixing period. 
Second, the multiplet components of the cross peaks in the simulated spectrum vary 
in both phase and intensity, in contrast to cross peaks derived from cross-relaxation 
which would have the same phase and similar intensities (14). It is proposed, therefore, 
that in NOESY data sets with sufficiently high resolution, one may distinguish between 
cross peaks arising from strong coupling effects and cross peaks arising from cross- 
relaxation by the relative phases of the multiplet components and their relative inten- 
sities. 

The behavior of the AB part of the ABX spin system during the zero mixing time 
NOESY experiment is exactly analogous to the behavior of the AB spin system. One 
finds A-B cross peaks at frequencies [G f (A+ + rJAB) + TX 3 T (A+ + ?TJ,& + ~11, 
[G + (A+ - TJAB) + d, w T (A+ - TJAB) + J], [ii IL (A- + JAB) - d, W T (A- + 71;JAB) 
- 7rJ], and [3 f (A- - ?TJ& - xJ, W r (A- - .?TJ& - 7rJ] with intensities proportional 
to (~JAB/~+)(- 1 + ~JABIA+), (~JAB/A+)( 1 + ~JAB/~+), (~~=IAB/A-)(- 1 + ~JAB/~-), and 
(?TJ,&A-)(l + ?TJAB/A-), respectively. No cross peaks are predicted between the 
AB and X parts of the spectrum. The X part of the 2D map has diagonal peaks at 
w I = wz = Wx f J/2, wx + (A+ - A-) and off-diagonal peaks between all of the multiplet 
lines. The strong coupling between A and B nuclei produces only small effects on the 
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FIG. 1. Contour plots of AB region of experimental (a) and simulated (b) NOESY experiment with zero 
mixing time on 2,6dicarhoxynaphthalene [see Ref. (13) for simulation parameters]. 
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intensities of some of the peaks, and these effects arise from the exchange of ?y-, 
magnetization with the combination modes 4&&,X-, during t, . 

The (7r/2),-r- u ( /2), part of the zero mixing time NOESY experiment is a z filter 
(15) which has been applied in other sequences. The efkcts of the z filter on strongly 
coupled spin systems described above can be expected in these other experiments too. 

(d) “Unexpected”peaks in C-H correlation experiments. In proton-decoupled 2D 
DEFT experiments (5, 16) and in conventional 2D DEPT experiments (16, Z7), one 
finds unexpected C-H correlation peaks between protons bonded to one carbon atom 
with the adjacent carbon atom(s) in addition to the expected “directly bonded” cor- 
relations. These unexpected correlation peaks are found to have signi&mt intensity 
when the difference in vicinal proton chemical shifts is approximately equal to the 
directly bonded ‘H-“C coupling constant, and are believed to arise from strong cou- 
pling effects. Although these features are observed in a number of correlation exper- 
iments, we shall concentrate on the simplest preparation-evolution sequence 
(r/2)?-tl/2-(?r)$-tJ2, and study the behavior of the fragment 

H(B) WA) 
I I 

--UC--3c- ) 

(W 

an ABX spin system, during this sequence. The pulses which are appended to this 
preparation-evolution sequence, in order to obtain heteronuclear correlation, convert 
transverse A magnetization to transverse X magnetization. We are therefore interested 
in the terms in the density operator containing operator A_ 1 at the end of the evolution 
period, since the final detected X-i magnetization is derived from these terms. 

It is useful to recognize that the propagator 
(dW4x + &J (X0 + &“&l/2 5% l (80 + ~lh/2 

* 

is equivalent to the propagator 

(7+%4x + &) El t,/2 TX, *-- 

3, t,/2 [W(A, + B,) + 2~r.f~~A~BJt~ 
-- * 

[see Ref. (I)] since this allows separate investigation of the effects of .+F’, and 20. The 
evolution of the density operator through this preparation-evolution sequence is 

A-l{LA(tl)COS(~~ABt,)ei”l + iLa(t,)sin(~JABt~)e”“), [251 

where 

LA cc [c, d+ + (dAB)*/(n+ A-)lexp[i(h+ + Uf,/21 

+ [c+d- - (rJnB)*/(A+A-)]exp[i(A+ - A-k,/21 
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+ [c-d+ - (.lrJAB)‘/(A+A-)]exp[-i(h+ - A-)t1/2] 

+ [c-d- + (nJA~)2/(A+A-)]exp[-i(A+ + A-)t,/2], 

and 

LB oc n;l&l/A+ + l/A-){exp[i(A+ + A-)t1/2] - exp[-i(A+ + A-)11/2]} 

WI 

+ rJ,&l/A+ - l/A...){exp[i(A+ - A-)ti/2] - exp[-i(A+ - A-)t1/2]}. 1271 

In Eq. [25], only the A-, terms are given in the final density operator, since only these 
terms are converted to X-i magnetization and reach the detector in the final stages of 
the heteronuclear correlation experiment. The term containing LA(fl) originates from 
the A0 term in the initial density operator, while the L&,) term originates from &. 
The oscillation frequencies of the various terms in LA(tl) and LB@,) are conveniently 
classified as 

and 

A, + A- = Gj, 

-(A+ + A-) = 2, 

“average A,” 

“average B,” 

A+ - A- = GAB “average A + B” 

since they correspond to averages of resonance frequencies in the AB part of the ABX 
spectrum. In the weak coupling limit where 6w % SJ, LAG is dominated by the term 
with frequency G,, and LB@,) by small terms with frequencies GA and lj,. As 6w 
decreases compared to SJ, the magnitudes of the terms in LOB with frequencies GA 
and Wg increase, and L,&,) continues to be dominated by the WA term. Terms in both 
LA(tl) and LB@,) with average A + B frequencies also grow in magnitude. It is clear 
that the term in LB(t,) with frequency ;j, gives rise to the “unexpected’ B-X correlation 
peak in the 2D heteronuclear correlation map since, after the magnetization transfer 
part of the sequence, it will produce a term proportional to 

Llexp(iw,t2)exp{i[ij - (A+ + A-)/2]t,}sin[?rJ,&,] 

in the final density operator. This term will produce correlation peaks at [w,, w2] 
= [ii - (A+ + A-)/2 + ?r J AB, ox]. It may be concluded therefore that the “unexpected’ 
correlation peaks arise from proton-proton magnetization transfer via strong coupling 
during the evolution period. 

(e) 20 DQ INADEQUATE experiment. One of the most powerful NMR assignment 
techniques available for large organic molecules is the 2D DQ INADEQUATE ex- 
periment (18-25) since it is capable of tracing out the molecular framework by cor- 
relating the 13C chemical shifts of coupled (directly bonded) carbon atoms. Bax and 
Freeman (26) have considered the behavior of an AB spin system during the INAD- 
EQUATE experiment, and have used element-by-element density matrix calculations 
to determine the 7 dependence of the total double-quantum coherence generated in 
the sequence 

7d2(44-7--1r(dJ2)-7 -?r/2(~3)-t,-3a/4(~,)-t2-Acquire, 

but did not deal with the explicit intensities of the various lines within the 2D DQ 
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INADEQUATE spectrum. The evolution of the density operator during the INAD- 
EQUATE sequence is 

A0 + Bo 
a/2(A, -t BJ Zi- ?r(A, + BJ ci%- 

. * * -- (2A+,Bo + 2AoB4 I) 

x {(sw/a)2 + (~J*s/A)2cos(2n7))/(2~) 
7~/&4x + 54 +@+-tt 

l w  

(-i/4)(2A+1 B+I){(~w/A)’ + (7rJAB/A)2cos(2A7))exp[-2Gt,] 

(3d4)(A, + &I zt2 . 

(A-, + B-,){(I - rJ&A)sin[(A + 7rJ~&] + (1 + ?rJ&A)sin[(A - 71;1A&] 

- WI - B-J(bw/A)cos[(A + ?rJ&z] - cos[(A - ?rJP.&2])exp[iiit2] 

X { [(SW/A)~ + (rJ&A)2cos(2Ar)]sin(27rJABT) - (7rJ&A)sin(2A7)cos(2rJAB7)) 

X exp[-2iGtl]{(l + \Iz)i/(lbfi)j. [28] 

The term in A-, + B-, in the final density operator is the detected signal and 
corresponds to peaks at [wl, w2] = [2W, W + (A + T&B)] with intensity propor- 
tional to (1 - ~~J&A){(cJ~/A)~ + (~JAB/A)2cos(A/(2J,,))}, and peaks at [w,, w2] 
= [2W, ij + (A - rJ&] with intensity proportional to (1 + KJ&A)((&w/A)~ 
+ t~.JA~A%&WJd)~ for T = l/(4,!&. The intensities of the lines are proportional 
to the doublequantum coherence intensity given by Bax and Freeman (26), and the 
relative intensities in the w2 dimension are just those of the conventional AB mm. 
It should be noted that the “inner” lines of the AB spectrum will have signi&cantly 
greater intensity than the “outer” lines, and the “inner” lines should be observable in 
the 2D DQ INADEQUATE spectrum under less stringent conditions than those dis- 
cussed by Bax and Freeman (26). 

CONCLUSIONS 

We have shown how the simple product basis operators for AB and ABX systems 
evolve during free precession. The detailed examples presented demonstrate the ap- 
plicability of the results. Further, but more qualitative, applications involve the ex- 
planation of pathways by which unexpected peaks in RELAY (27) and other exper- 
iments on strongly coupled systems can arise. We anticipate that these qualitative 
descriptions will be most useful to workers in the field. 
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